由莲山课件提供http://www.5ykj.com/ 资源全部免费
第18章 平行四边形 专项训练
专训1.判定平行四边形的五种常用方法
名师点金:
判定平行四边形的方法通常有五种,即定义和四种判定定理,选择判定方法时,一定要结合题目的条件,选择恰当的方法,从而简化解题过程.
利用两组对边分别平行判定平行四边形
1.如图,在▱ABCD中,E,F分别为AD,BC上的点,且BF=DE,连接AF,CE,BE,DF,AF与BE相交于M点,DF与CE相交于N点.求证:四边形FMEN为平行四边形.
(第1题)
利用两组对边分别相等判定平行四边形
2.如图,已知△ABD,△BCE,△ACF都是等边三角形.
求证:四边形ADEF是平行四边形.
(第2题)
利用一组对边平行且相等判定平行四边形
3.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.
求证:四边形ABCD为平行四边形.
(第3题)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
利用两组对角分别相等判定平行四边形
4.如图,在▱ABCD中,BE平分∠ABC,交AD于点E,DF平分∠ADC,交BC于点F,那么四边形BFDE是平行四边形吗?请说明理由.
(第4题)
利用对角线互相平分判定平行四边形
5.如图①,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.
(1)求证:四边形EGFH是平行四边形;
(2)如图②,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图②中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).
(第5题)
专训2.构造中位线的方法
名师点金:
三角形的中位线具有两方面的性质:一是位置上的平行关系,二是数量上的倍分关系.因此,当题目中给出三角形两边的中点时,可以直接连出中位线;当题目中给出一边的中点时,往往需要找另一边的中点,作出三角形的中位线.
连接两点构造三角形的中位线
1.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边三角形ABD和等边三角形BCE,点P,M,N分别为AC,AD,CE的中点.
(1)求证:PM=PN;(2)求∠MPN的度数.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(第1题)
利用角平分线+垂直构造中位线
2.如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=12,AC=18,求DM的长.
(第2题)
3.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.
(第3题)
倍长法构造三角形的中位线
4.如图,在△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°,M为AF的中点,求证:ME=CF
(第4题)
已知一边中点,取另一边中点构造三角形的中位线
5.如图,在四边形ABCD中,M、N分别是AD、BC的中点,若AB=10,CD=
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
8,求MN长度的取值范围.
(第5题)
6.如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点,求证:AE=MN.
(第6题)
已知两边中点,取第三边中点构造三角形的中位线
7.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于点N,求证:AN=AC.
(第7题)
答案
专训1
1.证明:∵四边形ABCD是平行四边形,DE=BF,∴DE綊BF.
∴四边形BFDE为平行四边形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴BE∥DF.
同理,AF∥CE.∴四边形FMEN为平行四边形.
2.证明:∵△ABD,△BCE,△ACF都是等边三角形,
∴BA=BD,BC=BE,∠DBA=∠EBC=60°.
∴∠EBC-∠EBA=∠DBA-∠EBA,
∴∠ABC=∠DBE.
∴△ABC≌△DBE.
∴AF=AC=DE.
同理,可证△ABC≌△FEC,
∴AD=AB=EF.
∴四边形ADEF是平行四边形.
3.证明:∵AB∥CD,∴∠BAE=∠DCF.
∵BE∥DF,∴∠BEF=∠DFE.
∴∠AEB=∠CFD.
在△AEB和△CFD中,
∴△AEB≌△CFD,
∴AB=CD.
又∵AB∥CD,∴四边形ABCD是平行四边形.
4.解:四边形BFDE是平行四边形.理由:在▱ABCD中,∠ABC=∠CDA,∠A=∠C.
∵BE平分∠ABC,DF平分∠ADC,
∴∠ABE=∠CBE=∠ABC,∠CDF=∠ADF=∠ADC.∴∠ABE=∠CBE=∠CDF=∠ADF.∵∠DFB=∠C+∠CDF,∠BED=∠ABE+∠A,∴∠DFB=∠BED.∴四边形BFDE是平行四边形.
5.(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,OA=OC,
∴∠EAO=∠FCO.
在△OAE与△OCF中,
∴△OAE≌△OCF,∴OE=OF.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
同理OG=OH,
∴四边形EGFH是平行四边形.
(2)解:与四边形AGHD面积相等的平行四边形有▱GBCH,▱ABFE,▱EFCD,▱EGFH.
专训2
1.(1)证明:如图,连接CD,AE.由三角形中位线定理可得PM綊CD,PN綊AE.∵△ABD和△BCE是等边三角形,∴AB=DB,BE=BC,∠ABD=∠CBE=60°,∴∠ABE=∠DBC.
∴△ABE≌△DBC,
∴AE=DC.∴PM=PN.
(2)解:如图,设PM交AE于F,PN交CD于G,AE交CD于H.由(1)知△ABE≌△DBC,∴∠BAE=∠BDC.
∴∠AHD=∠ABD=60°,
∴∠FHG=120°.
易证四边形PFHG为平行四边形,
∴∠MPN=120°.
(第1题)
2.解:如图,延长BD,CA交于N.
(第2题)
在△AND和△ABD中,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴△AND≌△ABD(ASA).
∴DN=DB,AN=AB.
∴DM=NC=(AN+AC)=(AB+AC)=15.
3.解:如图,延长BD交AC于点F,
(第3题)
∵AD平分∠BAC,
∴∠BAD=∠CAD.
∵BD⊥AD,∴∠ADB=∠ADF,
又∵AD=AD,∴△ADB≌△ADF(ASA).
∴AF=AB=6,BD=FD.
∵AC=10,∴CF=AC-AF=10-6=4.
∵E为BC的中点,∴DE是△BCF的中位线.
∴DE=CF=×4=2.
4.证明:如图,延长FE至N,使EN=EF,连接BN,AN.易得ME=AN.
∵EF=EN,∠BEF=90°,∴BE垂直平分FN.∴BF=BN.
∴∠BNF=∠BFN.∵△BEF为等腰直角三角形,∠BEF=90°,
∴∠BFN=45°.∴∠BNF=45°,
∴∠FBN=90°,即∠FBA+∠ABN=90°.又∵∠FBA+∠CBF=90°,
∴∠CBF=∠ABN.在△BCF和△BAN中,
∴△BCF≌△BAN.
∴CF=AN.∴ME=AN=CF.
(第4题)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(第5题)
5.解:如图,取BD的中点P,连接PM,PN.
∵M是AD的中点,P是BD的中点,
∴PM是△ABD的中位线,
∴PM=AB=5.
同理可得PN=CD=4.
在△PMN中,
∵PM-PN