由莲山课件提供http://www.5ykj.com/ 资源全部免费
湘教版8年级下册数学2.6.2菱形的判定同步练习
一、选择题(本大题共8小题)
1. 如图,要使▱ABCD成为菱形,则需添加的一个条件是( )
A.AC=AD B.BA=BC C.∠ABC=90° D. AC=BD
2. 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是( )
A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60°
3. 如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为( )
A.52cm B.40cm C.39cm D.26cm
4. 如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.若AD=10,DC=3,∠EBD=60°,则BE为( )时,四边形BFCE是菱形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.5 B.4 C.3 D.6
5. 如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD的值为( )时,平行四边形CDEB为菱形.
A.14 B.16 C.18 D.10
6. 如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长是( )cm.
A.14 B.16 C.18 D.10
7. 如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长( )
A.4 B.6 C.8 D.10
8. 过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. 2 B. 3 C. D.
二、填空题(本大题共6小题)
9. 如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件 使其成为菱形(只填一个即可).
10. 如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,若∠C=100°,则∠BAD的大小是 。
11. 如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=______.
12. 如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC,从中选择一个条件使四边形BECF是菱形,你认为这个条件是__________(填序号).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
13. 如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是 (只填写序号)
14. 如图,在给定的一张平行四边形纸片上做一个菱形,甲、乙两人的作法如下:
甲:连接AC,做AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断正确的是 。
三、计算题(本大题共4小题)
15. 如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.
(1)求证:四边形ECBF是平行四边形;
(2)当∠A=30°时,求证:四边形ECBF是菱形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
16. 如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.
(1)证明:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)
17. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:
(1)∠CEB=∠CBE;
(2)四边形BCED是菱形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
18. 如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD
(1)求∠AOD的度数;
(2)求证:四边形ABCD是菱形.
19. 如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
参考答案:
一、选择题(本大题共8小题)
1. B
分析:利用邻边相等的平行四边形为菱形即可得证.
解:如图,要使▱ABCD成为菱形,则需添加的一个条件是BA=BC,
故选B
2. B
分析:首先根据平移的性质得出ABCD,得出四边形ABCD为平行四边形,进而利用菱形的判定得出答案.
解:∵将△ABC沿BC方向平移得到△DCE,
∴ABCD,
∴四边形ABCD为平行四边形,
当AC=BC时,
平行四边形ACED是菱形.
故选:B.
3. A
分析:可定四边形ABCD为菱形,连接AC、BD相交于点O,则可求得BD的长,在Rt△AOB中,利用勾股定理可求得AB的长,从而可求得四边形ABCD的周长.
解:如图,连接AC、BD相交于点O,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵四边形ABCD的四边相等,
∴四边形ABCD为菱形,
∴AC⊥BD,S四边形ABCD=AC•BD,
∴×24BD=120,解得BD=10cm,
∴OA=12cm,OB=5cm,
在Rt△AOB中,由勾股定理可得AB==13(cm),
∴四边形ABCD的周长=4×13=52(cm),故选A.
4. B
分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
解:(1)证明:∵AB=DC,
∴AC=DF,
在△AEC和△DFB中
,
∴△AEC≌△DFB(SAS),
∴BF=EC,∠ACE=∠DBF
∴EC∥BF,
∴四边形BFCE是平行四边形;
(2)当四边形BFCE是菱形时,BE=CE,
∵AD=10,DC=3,AB=CD=3,
∴BC=10﹣3﹣3=4,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵∠EBD=60°,
∴BE=BC=4,
∴当BE=4 时,四边形BFCE是菱形,
故答案为:4.故选B.
5. C
分析:首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD=OB,CD=CB;最后Rt△BOC中,根据勾股定理得,OB的值,则AD=AB-2OB.
解:如图,连接CE交AB于点O.
∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,
∴AB==5(勾股定理).
若平行四边形CDEB为菱形时,CE⊥BD,且OD=OB,CD=CB.
∵AB•OC=AC•BC,
∴OC=.
∴在Rt△BOC中,根据勾股定理得,OB===,
∴AD=AB-2OB=.
故答案是:.
6. B
分析:利用三角形的中位线定理;矩形的性质;菱形的判定及性质解答即可。
解:根据三角形的中位线定理和矩形对角线相等的性质可证得四边形EFGH是菱形,且EF= AC=4,所以菱形的周长等于16cm,故选B。
7. C
分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD=4,OA=OC,OB=OD,
∴OD=OC=AC=2,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×2=8.
故选C.
8. A
分析: 求出∠ACB=∠DAC,然后利用“角角边”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,再根据对角线互相垂直平分的四边形是菱形得到四边形AECF是菱形,再求出∠ECF=60°,然后判断出△CEF是等边三角形,根据等边三角形的三条边都相等可得EF=CF,根据矩形的对边相等可得CD=AB,然后求出CF,从而得解.
解答: 解:∵矩形对边AD∥BC,
∴∠ACB=∠DAC,
∵O是AC的中点,
∴AO=CO,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴OE=OF,
又∵EF⊥AC,
∴四边形AECF是菱形,
∵∠DCF=30°,
∴∠ECF=90°﹣30°=60°,
∴△CEF是等边三角形,
∴EF=CF,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵AB=,
∴CD=AB=,
∵∠DCF=30°,
∴CF=÷=2,
∴EF=2.
故选A.
二、填空题(本大题共6小题)
9. 分析:利用菱形的判定方法确定出适当的条件即可.
解:如图,平行四边形ABCD的对角线AC,BD相交于点O,添加一个适当的条件为:AC⊥BD或∠AOB=90°或AB=BC使其成为菱形.
故答案为:AC⊥BD或∠AOB=90°或AB=BC
10. 分析:由题干BE=DE=BC=DC,可知四边形BECD为菱形,又∠C=100°,所以∠BED=100°,∠CBE=∠CDE=80°.连接BD,易知AE、BE、DE是△ABD的角平分线.再根据菱形的性质即可得出答案.
解:连接BD,并延长AE交BD于点O,
∵AE=BE=DE=BC=DC,AB=AD,∴四边形BCDE是菱形,
∴AE、BE、DE是△ABD的角平分线.
∴A、E、O、C四点共线,
∵∠C=100°,∴∠BED=50°,
∴∠BEO=∠BED=50°,
∴∠ABE=25°,
∴∠BAD=50°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
11. 分析:因为AB=AD,∠BAD=80°,可求∠ABD=50°;又BE=BO,所以∠BEO=∠BOE,根据三角形内角和定理求解.
解:∵ABCD是菱形,∴AB=AD.∴∠ABD=∠ADB.
∵∠BAD=80°,∴∠ABD=×(180°-80°)=50°.
又∵BE=BO,
∴∠BEO=∠BOE=×(180°-50°)=65°.
故答案为:65.
12.分析:根据菱形的判定方法进行验证得到答案。
解:∵BD=CD,DE=DF,
∴四边形BECF是平行四边形,
①BE⊥EC时,四边形BECF是矩形,不一定是菱形;
②四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;
③AB=AC时,∵D是BC的中点,
∴AF是BC的中垂线,
∴BE=CE,
∴平行四边形BECF是菱形.
13. 分析:根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.
解:因为l是四边形ABCD的对称轴,AB∥CD,
则AD=AB,∠1=∠2,∠1=∠4,
则∠2=∠4,
∴AD=DC,
同理可得:AB=AD=BC=DC,
所以四边形ABCD是菱形.
根据菱形的性质,可以得出以下结论:
所以①AC⊥BD,正确;
②AD∥BC,正确;
③四边形ABCD是菱形,正确;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
④在△ABD和△CDB中
∵
∴△ABD≌△CDB(SSS),正确.
故答案为:①②③④.
14.分析:首先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.
解:甲的作法正确;
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠ACN,
∵MN是AC的垂直平分线,
∴AO=CO,
在△AOM和△CON中,
∴△AOM≌△CON(ASA),
∴MO=NO,
∴四边形ANCM是平行四边形,
∵AC⊥MN,
∴四边形ANCM是菱形;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
乙的作法正确;
∵AD∥BC,
∴∠1=∠2,∠6=∠7,
∵BF平分∠ABC,AE平分∠BAD,
∴∠2=∠3,∠5=∠6,
∴∠1=∠3,∠5=∠7,
∴AB=AF,AB=BE,
∴AF=BE
∵AF∥BE,且AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴平行四边形ABEF是菱形;
故选:C.
三、计算题(本大题共4小题)
15. 分析:(1)利用平行四边形的判定证明即可;
(2)利用菱形的判定证明即可.
证明:(1)∵D,E分别为边AC,AB的中点,
∴DE∥BC,即EF∥BC.
又∵BF∥CE,
∴四边形ECBF是平行四边形.
(2)∵∠ACB=90°,∠A=30°,E为AB的中点,
∴CB=AB,CE=AB.
∴CB=CE.
又由(1)知,四边形ECBF是平行四边形,
∴四边形ECBF是菱形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
16.分析:(1)先证明四边形ADCE是平行四边形,再证出一组邻边相等,即可得出结论;
(2)过点D作DF⊥CE,垂足为点F;先证明△BCD是等边三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行线的性质得出∠DCE=∠BDC=60°,在Rt△CDF中,由直角三角形的性质求出DF即可.
解答:(1)证明:∵AE∥CD,CE∥AB,
∴四边形ADCE是平行四边形,
又∵∠ACB=90°,D是AB的中点,
∴CD=AB=BD=AD,
∴平行四边形ADCE是菱形;
(2)解:过点D作DF⊥CE,垂足为点F,如图所示:
DF即为菱形ADCE的高,
∵∠B=60°,CD=BD,
∴△BCD是等边三角形,
∴∠BDC=∠BCD=60°,CD=BC=6,
∵CE∥AB,
∴∠DCE=∠BDC=60°,
又∵CD=BC=6,
∴在Rt△CDF中,DF=6×=3.
17. 分析:(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.
(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.
证明;(1)∵△ABC≌△ABD,
∴∠ABC=∠ABD,
∵CE∥BD,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠CEB=∠DBE,
∴∠CEB=∠CBE.
(2))∵△ABC≌△ABD,
∴BC=BD,
∵∠CEB=∠CBE,
∴CE=CB,
∴CE=BD
∵CE∥BD,
∴四边形CEDB是平行四边形,
∵BC=BD,
∴四边形CEDB是菱形.
18. 分析:(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,得到答案∠AOD=90°;
(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.
解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,
∴∠DAC=∠BAC,∠ABD=∠DBC,
∵AE∥BF,
∴∠DAB+∠CBA,=180°,
∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,
∴∠AOD=90°;
(2)证明:∵AE∥BF,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠ADB=∠DBC,∠DAC=∠BCA,
∵AC、BD分别是∠BAD、∠ABC的平分线,
∴∠DAC=∠BAC,∠ABD=∠DBC,
∴∠BAC=∠ACB,∠ABD=∠ADB,
∴AB=BC,AB=AD
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴四边形ABCD是菱形.
19. 分析:(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
解答: (1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
∵
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
∴DF∥AE,DF=AE,
∴四边形AEFD是平行四边形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四边形BFDE是平行四边形,
∴四边形BFDE是菱形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费