由莲山课件提供http://www.5ykj.com/ 资源全部免费
第九章 图形的相似 单元测试卷
题 号
一
二
三
总 分
得 分
一、选择题(每题3分,共30分)
1.若=,则等于( )
A. B. C. D.
2.若两个相似多边形的面积之比为1∶4,则它们的周长之比为( )
A.1∶4 B.1∶2 C.2∶1 D.4∶1
3.如图,在△ABC中,若DE∥BC,AD=3,BD=6,AE=2,则AC的长为( )
A.4 B.5 C.6 D.8
4.如图,小正方形的边长均为1,则下列图中的三角形与△ABC相似的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
5.如图,在△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )
A.AB2=BC·BD B.AB2=AC·BD
C.AB·AD=BD·BC D.AB·AD=AD·CD
6.如图,为估算某河的宽度(河两岸平行),在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上,若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB等于( )
A.60 m B.40 m C.30 m D.20 m
7.如图,△ABO是由△A'B'O经过位似变换得到的,若点P'(m,n)在△A'B'O上,则点P'经过位似变换后的对应点P的坐标为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.(2m,n) B.(m,n) C.(m,2n) D.(2m,2n)
8.如图,点E为▱ABCD的边AD上一点,且AE∶DE=1∶3,点F为AB的中点,EF交AC于点G,则AG∶GC等于( )
A.1∶2 B.1∶5 C.1∶4 D.1∶3
9.如图,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为( )
A.1 B.2 C.12-6 D.6-6
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
10.如图,在钝角三角形ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分 ∠AEB交AB于点M,取BC的中点D,AC的中点N,连接DN,DE,DF.下列结论:①EM=DN;②S△CND=S四边形ABDN;③DE=DF;④DE⊥DF.其中正确结论的个数为( )
A.1 B.2 C.3 D.4
二、填空题(每题3分,共24分)
11.假期,爸爸带小明去A地旅游.小明想知道A地与他所居住的城市的距离,他在比例尺为1∶500 000的地图上测得所居住的城市距A地32 cm,则小明所居住的城市与A地的实际距离为_____________.
12.已知=,则的值是_____________.
13.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形的面积,S2表示长为AD(AD=AB)、宽为AC的矩形的面积,则S1与S2的大小关系为_____________.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
14.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1∶,点A的坐标为(0,1),则点E的坐标是 .
15.如图,已知D,E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE∶S四边形DBCE=1∶8,那么AE∶AC= .
16.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
17.如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是点B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,则BM的长为 .
18.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2,…,以此类推,则Sn= .(用含n的式子表示)
三、解答题(19,21题每题8分,24题14分,其余每题12分,共66分)
19.如图,多边形ABCDEF和多边形A1B1C1D1E1F1相似(各字母已按对应关系排列),∠A=∠D1=135°,∠B=∠E1=120°,∠C1=95°.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)求∠F的度数;
(2)如果多边形ABCDEF和多边形A1B1C1D1E1F1的相似比是1∶1.5,且CD=15 cm,求C1D1的长度.
20.如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-2,4),B(-2,1),C(-5,2).
(1)请画出△ABC关于x轴对称的△A1B1C1;
(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A2,B2,C2,请画出△A2B2C2;
(3)求△A1B1C1与△A2B2C2的面积比,即∶=________.(不写解答过程,直接写出结果)
21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
和CB交于点G.
(1)求证:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的长.
22.如图,一条河的两岸BC与DE互相平行,两岸各有一排景观灯(图中黑点代表景观灯),每排相邻两景观灯的间隔都是10 m,在与河岸DE的距离为16 m的A处(AD⊥DE)看对岸BC,看到对岸BC上的两个景观灯的灯杆恰好被河岸DE上两个景观灯的灯杆遮住.河岸DE上的两个景观灯之间有1个景观灯,河岸BC上被遮住的两个景观灯之间有4个景观灯,求这条河的宽度.
23.如图,在矩形ABCD中,已知AB=24,BC=12,点E沿BC边从点B开始向点C以每秒2个单位长度的速度运动;点F沿CD边从点C开始向点D以每秒4个单位长度的速度运动.如果E,F同时出发,用t(0≤t≤6)秒表示运动的时间.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
请解答下列问题:
(1)当t为何值时,△CEF是等腰直角三角形?
(2)当t为何值时,以点E,C,F为顶点的三角形与△ACD相似?
24.如图,E,F分别是正方形ABCD的边DC,CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连接DF.
(1)求证:△ADE≌△DCF.
(2)若E是CD的中点,求证:Q为CF的中点.
(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.
参考答案
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
一、1.【答案】D 2.【答案】B
3.【答案】C
解:因为DE∥BC,所以AE∶AC=AD∶AB=3∶9=1∶3,则AC=6.
4.【答案】A
5.【答案】A
解:因为△ABC∽△DBA,所以==.所以AB2=BC·BD,AB·AD=AC·DB.
6.【答案】B
解:∵AB⊥BC,CD⊥BC,∴∠ABC=∠DCE=90°.又∵∠AEB=∠DEC,∴△ABE∽△DCE.∴=,即=.∴AB=40 m.
7.【答案】D
解:将△A'B'O经过位似变换得到△ABO,由题图可知,点O是位似中心,位似比为A'B'∶AB=1∶2,所以点P'(m,n)经过位似变换后的对应点P的坐标为(2m,2n).
8.【答案】B
解:延长FE,CD交于点H,∵四边形ABCD是平行四边形,∴AB∥CD,易证△AFE∽△DHE,∴=,即=,∴HD=3AF.易证△AFG∽△CHG,∴===.故选B.
9.【答案】D
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:如图,过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H.
∵AB=AC,AD=AG,∴AD∶AB=AG∶AC.
又∠BAC=∠DAG,
∴△ADG∽△ABC.
∴∠ADG=∠B.∴DG∥BC.∴AN⊥DG.∵四边形DEFG是正方形,∴FG⊥DG.∴FH⊥BC.∵AB=AC=18,BC=12,∴BM=BC=6.∴AM==12.∵=,即=,∴AN=6.∴MN=AM-AN=6.∴FH=MN-GF=6-6.故选D.
10.【答案】D
解:∵△ABE是等腰直角三角形,EM平分∠AEB,∴EM是AB边上的中线.∴EM=AB.∵点D、点N分别是BC,AC的中点,∴DN是△ABC的中位线.∴DN=AB,DN∥AB.∴EM=DN.①正确.∵DN∥AB,∴△CDN∽△CBA.
∴==.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴S△CND=S四边形ABDN.②正确.
如图,连接DM,FN,则DM是△ABC的中位线,
∴DM=AC,DM∥AC.
∴四边形AMDN是平行四边形.
∴∠AMD=∠AND.易知∠ANF=90°,∠AME=90°,
∴∠EMD=∠FND.
∵FN是AC边上的中线,
∴FN=AC.∴DM=FN.
∴△DEM≌△FDN.
∴DE=DF,∠FDN=∠DEM.
③正确.
∵∠MDN+∠AMD=180°,
∴∠EDF=∠MDN-(∠EDM+∠FDN)=180°-∠AMD-(∠EDM+∠DEM)=180°-(∠AMD+∠EDM+∠DEM)=180°-(180°-∠AME)=180°-(180°-90°)=90°.
∴DE⊥DF.④正确.故选D.
二、11.【答案】160 km
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:设小明所居住的城市与A地的实际距离为x km,根据题意可列比例式为=,解得x=160.
12.【答案】
解:∵=,∴设a=13,b=5,则==.
13.【答案】S1=S2
解:∵C是线段AB的黄金分割点,且BC>AC,∴BC2=AC·AB,又∵S1=BC2,S2=AC·AD=AC·AB,∴S1=S2.
14.【答案】(,)
解:∵点A的坐标为(0,1),∴OA=1.∵正方形OABC与正方形ODEF是位似图形,O为位似中心,位似比为1∶,∴=.∴OD=OA=×1=.∵四边形ODEF是正方形,∴DE=OD=.∴点E的坐标为(,).
15.【答案】1∶3
16.【答案】5.5 m
解:由已知得△DEF∽△DCB,∴=,∵DE=40 cm=0.4 m,EF=20 cm=0.2 m,CD=8 m,∴=.∴CB=4 m.
∴AB=4+1.5=5.5(m).
17.【答案】或3
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:∵∠ABC=∠FBP=90°,∴∠ABP=∠CBF.当△MBC∽△ABP时,BM∶AB=BC∶BP,得BM=4×4÷3=;当△CBM∽△ABP时,BM∶BP=CB∶AB,得BM=4×3÷4=3.
18.【答案】×
解:在正△ABC中,AB1⊥BC,∴BB1=BC=1.
在Rt△ABB1中,AB1===,
根据题意可得△AB2B1∽△AB1B,记△AB1B的面积为S,∴=.
∴S1=S.
同理可得S2=S1,S3=S2,S4=S3,….
又∵S=×1×=,
∴S1=S=×,S2=S1=×,S3=S2=×,S4=S3=×,…,Sn=×.
三、19.解:(1)∵多边形ABCDEF和多边形A1B1C1D1E1F1相似,又∠C和∠C1,∠D和∠D1,∠E和∠E1是对应角,∴∠C=95°,∠D=135°,∠E=120°.由多边形内角和定理,知∠F=720°-(135°+120°+95°+135°+120°)=115°.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)∵多边形ABCDEF和多边形A1B1C1D1E1F1的相似比是1∶1.5,且CD=15 cm,∴C1D1=15×1.5=22.5(cm).
20.分析:(1)根据关于x轴对称的两点的坐标特征得出对应点的位置,进而得出答案;(2)将△A1B1C1三个顶点的横坐标与纵坐标同时乘以-2得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.
解:(1)如图,△A1B1C1即为所求.
(2)如图,△A2B2C2即为所求.
(3)1∶4
21.(1)证明:∵AB∥FC,∴∠A=∠ECF.又∵∠AED=∠CEF,
且DE=FE,∴△ADE≌△CFE.
(2)解法一:∵AB∥FC,∴∠GBD=∠GCF,∠GDB=∠GFC.
∴△GBD∽△GCF.∴=.
∴=.∴CF=3.
由(1)得△ADE≌△CFE.
∴AD=CF=3,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AB=AD+BD=3+1=4.
解法二:如图,取BC的中点H,连接EH.
∵△ADE≌△CFE,
∴AE=CE.∴EH是△ABC的中位线.∴EH∥AB,且EH=AB.
∴∠GBD=∠GHE,∠GDB=∠GEH.∴△GBD∽△GHE.
∴=.∴=.
∴EH=2.∴AB=2EH=4.
22.解:由题意可得DE∥BC,
所以=.
又因为∠DAE=∠BAC,
所以△ADE∽△ABC.
所以=,即=.
因为AD=16 m,BC=50 m,DE=20 m,
所以=.
解得DB=24 m.
答:这条河的宽度为24 m.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.解:(1)由题意可知BE=2t,CF=4t,CE=12-2t.
因为△CEF是等腰直角三角形,∠ECF是直角,所以CE=CF.
所以12-2t=4t,解得t=2.
所以当t=2时,△CEF是等腰直角三角形.
(2)根据题意,可分为两种情况:
①若△EFC∽△ACD,则=,
所以=,解得t=3,
即当t=3时,△EFC∽△ACD.
②若△FEC∽△ACD,则=,
所以=,解得t=1.2,
即当t=1.2时,△FEC∽△ACD.
因此,当t为3或1.2时,以点E,C,F为顶点的三角形与△ACD相似.
24.(1)证明:由AD=DC,∠ADE=∠DCF=90°,DE=CF,得△ADE≌△DCF.
(2)证明:因为四边形AEHG是正方形,所以∠AEH=90°.
所以∠QEC+∠AED=90°.
又因为∠AED+∠EAD=90°,
所以∠EAD=∠QEC.
因为∠ADE=∠C=90°,
所以△ECQ∽△ADE.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以=.
因为E是CD的中点,所以EC=DE=AD.所以=.
因为DE=CF,所以==.即Q是CF的中点.
(3)解:S1+S2=S3成立.
理由:因为△ECQ∽△ADE,
所以=.所以=.
因为∠C=∠AEQ=90°,
所以△AEQ∽△ECQ.
所以△AEQ∽△ECQ∽△ADE.
所以=,=.
所以+=+=.
在Rt△AEQ中,由勾股定理,得
EQ2+AE2=AQ2,
所以+=1,即S1+S2=S3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费