由莲山课件提供http://www.5ykj.com/ 资源全部免费
2.2 切线长定理 同步练习
一、单选题
1、以下命题正确的是( )
A、圆的切线一定垂直于半径;
B、圆的内接平行四边形一定是正方形;
C、直角三角形的外心一定也是它的内心;
D、任何一个三角形的内心一定在这个三角形内
2、下列说法:
①三点确定一个圆;
②垂直于弦的直径平分弦;
③三角形的内心到三条边的距离相等;
④圆的切线垂直于经过切点的半径.
其中正确的个数是( )
A、0
B、2
C、3
D、4
3、如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=BC;③PB=PF;④AD2=4AB•DC.其中正确的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A、①②③④
B、只有①②
C、只有①②④
D、只有③④
4、如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( )
A、点(0,3)
B、点(2,3)
C、点(5,1)
D、点(6,1)
5、如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A、DE=DO
B、AB=AC
C、CD=DB
D、AC∥OD
6、如图所示,⊙M与x轴相切于原点,平行于y轴的直线交圆于P,Q两点,P点在Q点的下方,若P点坐标是(2,1),则圆心M的坐标是( )
A、(0,3)
B、(0,2)
C、(0,)
D、(0,)
7、.如图,半圆D的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x的函数关系式是 ( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A、y=-x2+x
B、y=-x2+x
C、y=-x2-x
D、y=x2-x
8、如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PC=4,则两圆组成的圆环的面积是( )
A、16π
B、36π
C、52π
D、81π
9、如图,在⊙O中,AD,CD是弦,连接OC并延长,交过点A的切线于点B,若∠ADC=30°,则∠ABO的度数为( )
A、20°
B、30°
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C、40°
D、50°
10、已知⊙O是以原点为圆心,为半径的圆,点P是直线上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为( )
A、3
B、4
C、
D、
11、如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是( )
A、4
B、8
C、
D、
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
12、如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间的关系满足( )
A、R=2r
B、R=3r
C、R=r
D、R=r
13、如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为( )
A、20
B、30
C、40
D、50
14、如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,0C=8cm,则BE+CG的长等于( )
A、13
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
B、12
C、11
D、10
15、如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为( )
A、
B、
C、3
D、5
二、填空题
16、如图,直线AB与⊙O相切于点C,D是⊙O上的一点,∠CDE=22.5°,若EF∥AB,且EF=2,则⊙O的半径是 ________.
17、如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长________ .
18、如图,⊙O是四边形ABCD的内切圆,切点分别为E、F、G、H,已知AB=5,CD=7,那么AD+BC= ________.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
19、如图,PA,PB是⊙O的切线,CD切⊙O于E,PA=6,则△PDC的周长为 ________.
20、如图,AB为半⊙O的直径,C为半圆弧的三等分点,过B,C两点的半⊙O的切线交于点P,若AB的长是2a,则PA的长是________ .
三、解答题
21、如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点.若AO=8cm,DO=6cm,求OE的长.
22、如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
﹣mx+m﹣1=0的两个根,求△PCD的周长.
23、如图,AB是⊙O的直径,AC是弦,半径OD⊥AC于点E,过点D的切线与BA延长线交于点F.
(1)求证:∠CDB=∠BFD;
(2)若AB=10,AC=8,求DF的长.
24、如图,点C在⊙O的直径BA的延长线上,AB=2AC,CD切⊙O于点D,连接CD,OD.
(1)求角C的正切值:
(2)若⊙O的半径r=2,求BD的长度.
25、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)若⊙O的半径为6,BC=8,求弦BD的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
答案部分
一、单选题
1、
【答案】D
2、
【答案】C
3、
【答案】C
4、
【答案】C
5、
【答案】A
6、
【答案】C
7、
【答案】A
8、
【答案】B
9、
【答案】B
10、
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【答案】B
11、
【答案】B
12、
【答案】A
13、
【答案】C
14、
【答案】D
15、
【答案】B
二、填空题
16、
【答案】
17、
【答案】
18、
【答案】12
19、
【答案】12
20、
【答案】a
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题
21、
【答案】解:∵AB∥CD,⊙O为内切圆,
∴∠OAD+∠ODA=90°,
∴∠AOD=90°,
∵AO=8cm,DO=6cm,
∴AD=10cm,
∵OE⊥AD,
∴AD•OE=OD•OA,
∴OE=4.8cm.
22、
【答案】解:∵PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,
∴PA+PB=m,PA•PB=m﹣1,
∵PA、PB切⊙O于A、B两点,
∴PA=PB=,
即•=m﹣1,
即m2﹣4m+4=0,
解得:m=2,
∴PA=PB=1,
∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,
∴AD=ED,BC=EC,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴△PCD的周长为:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=PA+PB=2.
23、
【答案】解:(1)∵DF与⊙O相切,
∴DF⊥OD,
∵OD⊥AC,
∴DF∥AC,
∴∠CAB=∠BFD,
∴∠CAB=∠BFD,
∴∠CDB=∠BFD;
(2)∵半径OD垂直于弦AC于点E,AC=8,
∴AE=AC=.
∵AB是⊙O的直径,
∴OA=OD=AB=,
在Rt△AEO中,OE===3,
∵AC∥DF,
∴△OAE∽△OFD.
∴,
∴=,
∴DF=.
24、
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【答案】解:(1)∵CD切⊙O于点D,
∴CD⊥OD,
又∵AB=2AC,
∴OD=AO=AC=CO
∴∠C=30°
∴tan∠C=;
(2)连接AD,
∵AB是直径,
∴∠ADB=90°,
∵∠DOA=90°﹣30°=60°,
又∵OD=OA,
∴△DAO是等边三角形.
∴DA=r=2,
∴DB==.
25、
【答案】(1)证明:连接OB,如图所示:
∵E是弦BD的中点,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴BE=DE,OE⊥BD,=,
∴∠BOE=∠A,∠OBE+∠BOE=90°,
∵∠DBC=∠A,
∴∠BOE=∠DBC,
∴∠OBE+∠DBC=90°,
∴∠OBC=90°,
即BC⊥OB,
∴BC是⊙O的切线;
(2)解:∵OB=6,BC=8,BC⊥OB,
∴OC==10,
∵△OBC的面积=OC•BE=OB•BC,
∴BE===4.8,
∴BD=2BE=9.6,
即弦BD的长为9.6.
由莲山课件提供http://www.5ykj.com/ 资源全部免费