由莲山课件提供http://www.5ykj.com/ 资源全部免费
2.3 三角形的内切圆 同步练习
一、单选题
1、下列说法:
①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等。
其中不正确的有( )个。
A、1
B、2
C、3
D、4
2、如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A、一处
B、两处
C、三处
D、四处
3、在Rt△A
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
BC中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为( )
A、1.5,2.5
B、2,5
C、1,2.5
D、2,2.5
4、如图, O为Rt△ABC内切圆, ∠C=90°, AO延长线交BC于D点,
若AC=4, CD=1, 则⊙O半径为( )
A、
B、
C、
D、
5、图中圆与圆之间不同的位置关系有( )
A、2种
B、3种
C、4种
D、5种
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
6、已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是( )
A、0<d<1
B、d>5
C、0<d<1或d>5
D、0≤d<1或d>5
7、在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是 ( )
A、
B、1
C、2
D、
8、如图4,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有( )
A、内切、相交
B、外离、相交
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C、外切、外离
D、外离、内切
9、若⊙O1 , ⊙O2的半径分别是r1=5,r2=3,圆心距d=8,则这两个圆的位置关系是( )
A、内切
B、相交
C、外切
D、外离
10、⊙O1和⊙O2的半径分别为3cm和5cm,若O1O2=8cm,则⊙O1和⊙O2的位置关系是
A、外切
B、相交
C、内切
D、内含
11、两圆的半径分别为R和r,圆心距d=3,且R、r是方程的两个根,则这两个圆的位置关系是( )
A、内切
B、外切
C、相交
D、内含
12、在△ABC中,O为内心,∠A=80°,则∠BOC=( )
A、140°
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
B、135°
C、130°
D、125°
13、如图,△ABC中,下面说法正确的个数是( )个.
①若O是△ABC的外心,∠A=50°,则∠BOC=100°;
②若O是△ABC的内心,∠A=50°,则∠BOC=115°;
③若BC=6,AB+AC=10,则△ABC的面积的最大值是12;
④△ABC的面积是12,周长是16,则其内切圆的半径是1.
A、1
B、2
C、3
D、4
二、填空题
14、若直角三角形的两条直角边长分别是6和8,则它的外接圆半径为________ ,内切圆半径为________ .
15、在Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,⊙O是Rt△ABC的内切圆,则⊙O的面积是 ________(用含π的式子表示).
16、如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是________
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
17、如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB,BC,AC于点D,E,F,则AF的长为________.
18、如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:
①∠BOC=90º+∠A; ②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=n,则S△AEF=mn; ④EF是△ABC的中位线.其中正确的结论是________.
三、解答题
19、如图,△ABC的周长为24,面积为24,求它的内切圆的半径.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20、如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P是边AC上的一动点,PH⊥AB,垂足为H.
(1)求⊙O的半径的长及线段AD的长;
(2)设PH=x,PC=y,求y关于x的函数关系式.
21、△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=11cm,BC=16cm,CA=15cm,求AF、BD、CE的长?
22、在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.如图,⊙O是△ABC的内切圆,与三边分别相切于点E、F、G.
(1)求证:内切圆的半径r=1;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)求tan∠OAG的值.
23、如图△ABC内接于圆O,I是△ABC的内心,AI的延长线交圆O于点D.
(1)求证:BD=DI;
(2)若OI⊥AD,求的值.
24、已知:如图,点N为△ABC的内心,延长AN交BC于点D,交△ABC的外接圆于点E.
(1)求证:EB=EN=EC;
(2)求证:NE2=AE•DE.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25、如图,⊙O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是△ABD的内心.求证:
(1)OI是△IBD的外接圆的切线;
(2)AB+AD=2BD.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
答案部分
一、单选题
1、
【答案】D
2、
【答案】D
3、
【答案】C
4、
【答案】A
5、
【答案】A
6、
【答案】D
7、
【答案】B
8、
【答案】B
9、
【答案】C
10、
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【答案】A
11、
【答案】A
12、
【答案】C
13、
【答案】C
二、填空题
14、
【答案】5;2
15、
【答案】4πcm2
16、
【答案】2
17、
【答案】4.5
18、
【答案】①②
三、解答题
19、
【答案】解:连结OA、OB、OC,作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
设它的内切圆的半径为r,则OD=OE=OF=r,
∵S△ABC=S△AOB+S△OBC+S△OAC ,
∴•r•AB+•r•BC+•r•AC=24,
∴r(AB+BC+AC)=24,
∴r•24=24,
∴r=2.
即它的内切圆的半径为2.
20、
【答案】解:(1)连接AO、DO.设⊙O的半径为r.
在Rt△ABC中,由勾股定理得AC==4,
则⊙O的半径r=(AC+BC﹣AB)=(4+3﹣5)=1;
∵CE、CF是⊙O的切线,∠ACB=90°,
∴∠CFO=∠FCE=∠CEO=90°,CF=CE,
∴四边形CEOF是正方形,
∴CF=OF=1;
又∵AD、AF是⊙O的切线,
∴AF=AD;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AF=AC﹣CF=AC﹣OF=4﹣1=3,
即AD=3;
(2)点P在线段AC上时.
在Rt△ABC中,AB=5,AC=4,BC=3,
∵∠C=90°,PH⊥AB,
∴∠C=∠PHA=90°,
∵∠A=∠A,
∴△AHP∽△ACB,
∴,
即
∴y=﹣x+4,
即y与x的函数关系式是y=﹣x+4.
21、
【答案】解:∵△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,
∴AF=AE,BF=BD,CD=CE.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
设AF=AE=x,则BF=BD=11﹣x,EC=DC=15﹣x.
根据题意得11﹣x+15﹣x=16.
解得;x=5cm.
∴AF=5cm.BD=11﹣x=11﹣5=6cm,EC=15﹣x=10cm.
∴AF=5cm,BD=6cm,EC=10cm.
22、
【答案】(1)证明:如图连结OE,OF,OG.
∵⊙O是△ABC的内切圆,∠C=90°,
∴四边形CEOF是正方形,
∴CE=CF=r.
又∵AG=AE=3﹣r,BG=BF=4﹣r,AG+BG=5,
∴(3﹣r)+(4﹣r)=5.
解得r=1;
(2)解:连结OA,在Rt△AOG中,
∵r=1,AG=3﹣r=2,
tan∠OAG=.
23、
【答案】(1)证明:∵点I是△ABC的内心
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠BAD=∠CAD,∠ABI=∠CBI
∵∠CBD=∠CAD
∴∠BAD=∠CBD
∴∠BID=∠ABI+∠BAD,∠BAD=∠CAD=∠CBD,
∵∠IBD=∠CBI+∠CBD,
∴∠BID=∠IBD
∴ID=BD;
(2)解:连接OA、OD、BD和BI,
∵OA=OD,OI⊥AD
∴AI=ID,
∵I为△ABC内心,
∴∠BAD=∠BCD,
∴弧BD=弧CD,
∵弧CD=弧CD,
∴∠BCD=∠BAD,
∴∠DBI=∠BCD+∠CBI=∠CAD+∠CBI,
=(∠BAC+∠ACB),
∵∠DIB=∠DAB+∠ABI=(∠BAC+∠ABC),
∴∠DIB=∠DBI,
∴BD=ID=AI,,
故OD⊥BC,记垂足为E,则有BE=BC,
作IG⊥AB于G,又∠DBE=∠IAG,而BD=AI,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴Rt△BDE≌Rt△AIG,
于是,AG=BE=BC,但AG=(AB+AC﹣BC),
故AB+AC=2BC,
∴=2.
24、
【答案】证明:(1)连接BN,
∵点N为△ABC的内心,
∴∠1=∠2,∠3=∠4.
∴∠BCE=∠1,
∴EB=EC.
∵∠5与∠2都是弧EC所对的圆周角,
∴∠5=∠2=∠1.
∴∠4+∠5=∠3+∠1.
∵∠NBE=∠4+∠5,∠BNE=∠3+∠1,
∴∠NBE=∠BNE.
∴EB=EN.
∴EB=EN=EC.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)由(1)知∠5=∠2=∠1,∠BED=∠AEB,
∴△BED∽△AEB.
∴.
即BE2=AE•DE.
∵EB=EN,
∴NE2=AE•DE.
25、
【答案】解:(1)∵∠CID=∠IAD+∠IDA,∠CDI=∠CDB+∠BDI=∠BAC+∠IDA=∠IAD+∠IDA
∴∠CID=∠CDI,
∴CI=CD.
同理,CI=CB.
故点C是△IBD的外心.
连接OA,OC,
∵I是AC的中点,且OA=OC,
∴OI⊥AC,即OI⊥CI.
∴OI是△IBD外接圆的切线.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)由(1)可得:
∵AC的中点I是△ABD的内心,
∴∠BAC=∠CAD
∴∠BDC=∠DAC=∠BAC,
又∵∠ACD=∠DCF,
∴△ADC∽△DFC,
∴,
∵AC=2CI
∴AC=2CD
∴AD=2DF
同理可得:AB=2BF
∴AB+AD=2BF+2DF=2BD.
由莲山课件提供http://www.5ykj.com/ 资源全部免费