由莲山课件提供http://www.5ykj.com/ 资源全部免费
重难点题型(二) 新定义问题
1.(2015·永州)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x,下列式子中错误的是(C)
A.[x]=x(x为整数)
B.0≤x-[x]<1
C.[x+y]≤[x]+[y]
D.[n+x]=n+[x](n为整数)
2.(2015·宜宾)在平面直角坐标系中,任意两点A(x1,y1),B(x2,y2),规定运算:①A⊕B=(x1+x2,y1+y2);②A⊗B=x1x2+y1y2;③当x1=x2且y1=y2时,A=B.有下列四个命题:(1)若A(1,2),B(2,-1),则A⊕B=(3,1),A⊗B=0;(2)若A⊕B=B⊕C,则A=C;(3)若A⊗B=B⊗C,则A=C;(4)对任意点A,B,C,均有(A⊕B)⊕C=A⊕(B⊕C)成立.其中正确命题的个数为(C)
A.1个 B.2个 C.3个 D.4个
3.(2016·梅州)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3==-.则方程x⊗(-2)=-1的解是(B)
A.x=4 B.x=5 C.x=6 D.x=7
4.(2016·岳阳)对于实数a,b,我们定义符号max{a,b}的意义为当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b;如:max{4,-2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,-x+1},则该函数的最小值是(B)
A.0 B.2 C.3 D.4
5.(2016·湖州)定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+x称为函数y=的一个“派生函数”.现给出以下两个命题:
(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧;
(2)函数y=的所有“派生函数”的图象都经过同一点.下列判断正确的是(C)
A.命题(1)与命题(2)都是真命题
B.命题(1)与命题(2)都是假命题
C.命题(1)是假命题,命题(2)是真命题
D.命题(1)是真命题,命题(2)是假命题
6.(2016·乐山)高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[-1.5]=-2.则下列结论:
①[-2.1]+[1]=-2;
②[x]+[-x]=0;
③若[x+1]=3,则x的取值范围是2≤x<3;
④当-1≤x