2017年邵阳县中考数学一模试题(含答案和解析)
加入VIP免费下载

本文件来自资料包: 《2017年邵阳县中考数学一模试题(含答案和解析)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2017年湖南省邵阳市邵阳县黄亭中学中考数学一模试卷 ‎ ‎ 一、选择题(本大题共有10个小题,每小题3分,共30分.)‎ ‎1.的相反数是(  )‎ A.2016 B.﹣2016 C. D.‎ ‎2.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为(  )‎ A. B. C. D.‎ ‎3.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为(  )‎ A.0.1008×106 B.1.008×106 C.1.008×105 D.10.08×104‎ ‎4.计算(﹣2x2)3的结果是(  )‎ A.﹣8x6 B.﹣6x6 C.﹣8x5 D.﹣6x5‎ ‎5.如图,下面几何体的俯视图不是圆的是(  )‎ A. B. C. D.‎ ‎6.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的(  )‎ A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC ‎7.一元二次方程x2﹣8x﹣1=0配方后可变形为(  )‎ A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15‎ ‎8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:‎ 成绩(分)‎ ‎35‎ ‎39‎ ‎42‎ ‎44‎ ‎45‎ ‎48‎ ‎50‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 人数(人)‎ ‎2‎ ‎5‎ ‎6‎ ‎6‎ ‎8‎ ‎7‎ ‎6‎ 根据上表中的信息判断,下列结论中错误的是(  )‎ A.该班一共有40名同学 B.该班学生这次考试成绩的众数是45分 C.该班学生这次考试成绩的中位数是45分 D.该班学生这次考试成绩的平均数是45分 ‎9.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为(  )‎ A.65° B.130° C.50° D.100°‎ ‎10.如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是(  )‎ A.(2,﹣1) B.(1,﹣2) C.(,﹣1) D.(﹣1,)‎ ‎ ‎ 二.填空题(每小题3分,共24分)‎ ‎11.分解因式:x2y﹣y=  .‎ ‎12.如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=  .‎ ‎13.化简:﹣=  .‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎14.已知,则2016+x+y=  .‎ ‎15.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是  .‎ ‎16.抛物线y=(x﹣1)2+2的对称轴是  .‎ ‎17.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=  .‎ ‎18.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于  .‎ ‎ ‎ 三、解答题(本大题共有3个小题,每小题8分,共24分)‎ ‎19.计算:()﹣1+20160﹣|﹣4|‎ ‎20.解不等式组,并写出它的所有正整数解.‎ ‎21.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.‎ ‎(1)求证:四边形CEDF是平行四边形;‎ ‎(2)若AB=3cm,BC=5cm,∠B=60°,当AE=  cm时,四边形CEDF是菱形.‎ ‎(直接写出答案,不需要说明理由)‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ 四、应用题(本大题共有3个小题,每小题8分,共24分)‎ ‎22.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:‎ ‎(1)本次调查共抽取了  天的空气质量检测结果进行统计;‎ ‎(2)补全条形统计图;‎ ‎(3)扇形统计图中3级空气质量所对应的圆心角为  °;‎ ‎(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.‎ ‎23.某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.‎ ‎(1)求甲、乙两工程队每天能完成绿化的面积.‎ ‎(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎24.如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据: =1.41, =1.73).‎ ‎ ‎ 五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)‎ ‎25.如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…An(xn,yn)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以An(xn,yn)为顶点且经过点Bn﹣1,Bn,等腰△AnBn﹣1Bn为第n个三角形.‎ ‎(1)求出A1的坐标;‎ ‎(2)求出第一条抛物线的解析式;‎ ‎(3)请直接写出An的坐标  .‎ ‎26.在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.‎ ‎(1)求证:△DEB∽△ACB;‎ ‎(2)当点F与点A重合时(如图①),求线段BD的长;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2017年湖南省邵阳市邵阳县黄亭中学中考数学一模试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本大题共有10个小题,每小题3分,共30分.)‎ ‎1.的相反数是(  )‎ A.2016 B.﹣2016 C. D.‎ ‎【考点】相反数.‎ ‎【分析】直接利用相反数的定义分析得出答案.‎ ‎【解答】解:∵﹣+=0,‎ ‎∴﹣的相反数是.‎ 故选:C.‎ ‎ ‎ ‎2.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为(  )‎ A. B. C. D.‎ ‎【考点】轴对称图形.‎ ‎【分析】根据轴对称图形的概念求解.‎ ‎【解答】解:A、不是轴对称图形,‎ B、不是轴对称图形,‎ C、不是轴对称图形,‎ D、是轴对称图形,‎ 故选:D.‎ ‎ ‎ ‎3.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为(  )‎ A.0.1008×106 B.1.008×106 C.1.008×105 D.10.08×104‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【考点】科学记数法—表示较大的数.‎ ‎【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.‎ ‎【解答】解:100800=1.008×105.‎ 故故选C.‎ ‎ ‎ ‎4.计算(﹣2x2)3的结果是(  )‎ A.﹣8x6 B.﹣6x6 C.﹣8x5 D.﹣6x5‎ ‎【考点】幂的乘方与积的乘方.‎ ‎【分析】根据积的乘方计算即可.‎ ‎【解答】解:(﹣2x2)3=(﹣2)3•(x2)3=﹣8x6.‎ 故选A.‎ ‎ ‎ ‎5.如图,下面几何体的俯视图不是圆的是(  )‎ A. B. C. D.‎ ‎【考点】简单几何体的三视图.‎ ‎【分析】俯视图是从几何体的正面看所得到的视图,分别找出四个几何体的俯视图可得答案.‎ ‎【解答】解:A、正方体的俯视图是正方形,故此选项符合题意;‎ B、球的俯视图是圆形,故此选项不符合题意;‎ C、圆锥的俯视图是圆形,故此选项不符合题意;‎ D、圆柱的俯视图是圆形,故此选项不符合题意;‎ 故选:A.‎ ‎ ‎ ‎6.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC ‎【考点】全等三角形的判定.‎ ‎【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.‎ ‎【解答】解:∵AE∥FD,‎ ‎∴∠A=∠D,‎ ‎∵AB=CD,‎ ‎∴AC=BD,‎ 在△AEC和△DFB中,‎ ‎,‎ ‎∴△EAC≌△FDB(SAS),‎ 故选:A.‎ ‎ ‎ ‎7.一元二次方程x2﹣8x﹣1=0配方后可变形为(  )‎ A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15‎ ‎【考点】解一元二次方程﹣配方法.‎ ‎【分析】方程利用配方法求出解即可.‎ ‎【解答】解:方程变形得:x2﹣8x=1,‎ 配方得:x2﹣8x+16=17,即(x﹣4)2=17,‎ 故选C ‎ ‎ ‎8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:‎ 成绩(分)‎ ‎35‎ ‎39‎ ‎42‎ ‎44‎ ‎45‎ ‎48‎ ‎50‎ 人数(人)‎ ‎2‎ ‎5‎ ‎6‎ ‎6‎ ‎8‎ ‎7‎ ‎6‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 根据上表中的信息判断,下列结论中错误的是(  )‎ A.该班一共有40名同学 B.该班学生这次考试成绩的众数是45分 C.该班学生这次考试成绩的中位数是45分 D.该班学生这次考试成绩的平均数是45分 ‎【考点】众数;统计表;加权平均数;中位数.‎ ‎【分析】结合表格根据众数、平均数、中位数的概念求解.‎ ‎【解答】解:该班人数为:2+5+6+6+8+7+6=40,‎ 得45分的人数最多,众数为45,‎ 第20和21名同学的成绩的平均值为中位数,中位数为: =45,‎ 平均数为: =44.425.‎ 故错误的为D.‎ 故选D.‎ ‎ ‎ ‎9.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为(  )‎ A.65° B.130° C.50° D.100°‎ ‎【考点】切线的性质.‎ ‎【分析】由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.‎ ‎【解答】解:∵PA、PB是⊙O的切线,‎ ‎∴OA⊥AP,OB⊥BP,‎ ‎∴∠OAP=∠OBP=90°,‎ 又∵∠AOB=2∠C=130°,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 则∠P=360°﹣(90°+90°+130°)=50°.‎ 故选C.‎ ‎ ‎ ‎10.如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是(  )‎ A.(2,﹣1) B.(1,﹣2) C.(,﹣1) D.(﹣1,)‎ ‎【考点】反比例函数与一次函数的交点问题.‎ ‎【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.‎ ‎【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).‎ 将A点坐标代入y=,得k=﹣2×1=﹣2,‎ 反比例函数的解析式为y=,‎ 联立双曲线、直线,得,‎ 解得,,‎ B(2,﹣1).‎ 故选:A.‎ ‎ ‎ 二.填空题(每小题3分,共24分)‎ ‎11.分解因式:x2y﹣y= y(x+1)(x﹣1) .‎ ‎【考点】提公因式法与公式法的综合运用.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.‎ ‎【解答】解:x2y﹣y,‎ ‎=y(x2﹣1),‎ ‎=y(x+1)(x﹣1),‎ 故答案为:y(x+1)(x﹣1).‎ ‎ ‎ ‎12.如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β= 125° .‎ ‎【考点】平行线的性质.‎ ‎【分析】根据两直线平行,同位角相等可得∠1=∠α,再根据邻补角的定义列式计算即可得解.‎ ‎【解答】解:∵a∥b,‎ ‎∴∠1=∠α=55°,‎ ‎∴∠β=180°﹣∠1=125°.‎ 故答案为:125°.‎ ‎ ‎ ‎13.化简:﹣=  .‎ ‎【考点】二次根式的加减法.‎ ‎【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.‎ ‎【解答】解:原式=2﹣‎ ‎=.‎ 故答案为:.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎14.已知,则2016+x+y= 2018 .‎ ‎【考点】解二元一次方程组.‎ ‎【分析】方程组两方程相减求出x+y的值,代入原式计算即可得到结果.‎ ‎【解答】解:,‎ ‎①﹣②得:x+y=2,‎ 则原式=2016+2=2018.‎ 故答案为:2018.‎ ‎ ‎ ‎15.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是  .‎ ‎【考点】概率公式.‎ ‎【分析】由一个学习兴趣小组有4名女生,6名男生,直接利用概率公式求解即可求得答案.‎ ‎【解答】解:∵一个学习兴趣小组有4名女生,6名男生,‎ ‎∴从这10名学生中选出一人担任组长,则男生当选组长的概率是: =.‎ 故答案为:.‎ ‎ ‎ ‎16.抛物线y=(x﹣1)2+2的对称轴是 x=1 .‎ ‎【考点】二次函数的性质.‎ ‎【分析】抛物线y=a(x﹣h)2+k是抛物线的顶点式,抛物线的顶点是(h,k),对称轴是x=h.‎ ‎【解答】解:y=(x﹣1)2+2,‎ 对称轴是x=1.‎ 故答案是:x=1.‎ ‎ ‎ ‎17.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A= 55° .‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【考点】旋转的性质.‎ ‎【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.‎ ‎【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,‎ ‎∴∠ACA′=35°,则∠A′=90°﹣35°=55°,‎ 则∠A=∠A′=55°.‎ 故答案为:55°.‎ ‎ ‎ ‎18.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于 π .‎ ‎【考点】弧长的计算;等边三角形的性质.‎ ‎【分析】由“凸轮”的外围是以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,得到∠A=∠B=∠C=60°,AB=AC=BC=1,然后根据弧长公式计算出三段弧长,三段弧长之和即为凸轮的周长.‎ ‎【解答】‎ 解:∵△ABC为正三角形,‎ ‎∴∠A=∠B=∠C=60°,AB=AC=BC=1,‎ ‎∴====,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 根据题意可知凸轮的周长为三个弧长的和,‎ 即凸轮的周长=++=3×=π.‎ 故答案为:π ‎ ‎ 三、解答题(本大题共有3个小题,每小题8分,共24分)‎ ‎19.计算:()﹣1+20160﹣|﹣4|‎ ‎【考点】实数的运算;零指数幂;负整数指数幂.‎ ‎【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,计算即可得到结果.‎ ‎【解答】解:原式=2+1﹣4=3﹣4=﹣1.‎ ‎ ‎ ‎20.解不等式组,并写出它的所有正整数解.‎ ‎【考点】解一元一次不等式组;一元一次不等式组的整数解.‎ ‎【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.‎ ‎【解答】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,‎ 解不等式x﹣5<,得:x<3.5,‎ 故不等式组的解集为:﹣2≤x<3.5,‎ 所以其正整数解有:1、2、3,‎ ‎ ‎ ‎21.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.‎ ‎(1)求证:四边形CEDF是平行四边形;‎ ‎(2)若AB=3cm,BC=5cm,∠B=60°,当AE= 2 cm时,四边形CEDF是菱形.‎ ‎(直接写出答案,不需要说明理由)‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【考点】平行四边形的判定与性质;菱形的判定.‎ ‎【分析】(1)易证得△CFG≌△EDG,推出FG=EG,根据平行四边形的判定即可证得结论;‎ ‎(2)由∠B=60°,易得当△CED是等边三角形时,四边形CEDF是菱形,继而求得答案.‎ ‎【解答】(1)证明:四边形ABCD是平行四边形,‎ ‎∴CF∥ED,‎ ‎∴∠FCD=∠GCD,‎ ‎∵G是CD的中点,‎ ‎∴CG=DG,‎ 在△FCG和△EDG中,‎ ‎,‎ ‎∴△CFG≌△EDG(ASA),‎ ‎∴FG=EG,‎ ‎∴四边形CEDF是平行四边形;‎ ‎(2)解:∵四边形ABCD是平行四边形,‎ ‎∴AD=BC=5cm,CD=AB=3cm,∠ADC=∠B=60°,‎ ‎∵当DE=CE时,四边形CEDF是菱形,‎ ‎∴当△CED是等边三角形时,四边形CEDF是菱形,‎ ‎∴DE=CD=3cm,‎ ‎∴AE=AD﹣DE=2cm,‎ 即当AE=2cm时,四边形CEDF是菱形.‎ 故答案为:2.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 四、应用题(本大题共有3个小题,每小题8分,共24分)‎ ‎22.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:‎ ‎(1)本次调查共抽取了 50 天的空气质量检测结果进行统计;‎ ‎(2)补全条形统计图;‎ ‎(3)扇形统计图中3级空气质量所对应的圆心角为 72 °;‎ ‎(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.‎ ‎【考点】条形统计图;用样本估计总体;扇形统计图.‎ ‎【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;‎ ‎(2)根据有理数的减法,可得5级的天数,根据5级的天数,可得答案;‎ ‎(3)根据圆周角乘以3级所占的百分比,可得答案;‎ ‎(4)根据样本数据估计总体,可得答案.‎ ‎【解答】解:(1)本次调查共抽取了24÷48%=50(天),‎ 故答案为:50;‎ ‎(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 空气质量等级天数统计图;‎ ‎(3)360°×=72°,‎ 故答案为:72;‎ ‎(4)365××100%=219(天),‎ 答:2015年该城市有219天不适宜开展户外活动.‎ ‎ ‎ ‎23.某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.‎ ‎(1)求甲、乙两工程队每天能完成绿化的面积.‎ ‎(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.‎ ‎【考点】分式方程的应用.‎ ‎【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;‎ ‎(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解 ‎【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,‎ 根据题意得:﹣=4,‎ 解得:x=50,‎ 经检验,x=50是原方程的解,‎ 则甲工程队每天能完成绿化的面积是50×2=100(m2),‎ 答:甲工程队每天能完成绿化的面积是100m2‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎,乙工程队每天能完成绿化的面积是50m2;‎ ‎(2)=16(天).‎ 答:乙队施工了16天.‎ ‎ ‎ ‎24.如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据: =1.41, =1.73).‎ ‎【考点】解直角三角形的应用.‎ ‎【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.‎ ‎【解答】解:由题意可得:∵AM=4米,∠MAD=45°,‎ ‎∴DM=4m,‎ ‎∵AM=4米,AB=8米,‎ ‎∴MB=12米,‎ ‎∵∠MBC=30°,‎ ‎∴BC=2MC,‎ ‎∴MC2+MB2=(2MC)2,‎ MC2+122=(2MC)2,‎ ‎∴MC=4,‎ 则DC=4﹣4≈2.9(米).‎ ‎ ‎ 五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)‎ ‎25.如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…An(xn,yn)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以An(xn,yn)为顶点且经过点Bn﹣1,Bn,等腰△AnBn﹣1Bn为第n个三角形.‎ ‎(1)求出A1的坐标;‎ ‎(2)求出第一条抛物线的解析式;‎ ‎(3)请直接写出An的坐标 (2n﹣1,) .‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A1(1,9);‎ ‎(2)设第一个抛物线解析式为y=a(x﹣1)2+9,把O(0,0)代入该函数解析式即可求得a的值;‎ ‎(2)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A2(3,3),A3(5,),根据规律即可得出An的坐标.‎ ‎【解答】解:(1)∵第一条抛物线过点O(0,0),B1(2,0),‎ ‎∴该抛物线的对称轴是x=1.‎ 又∵顶点A1(x1,y1)在反比例函数y=图象上,‎ ‎∴y1=9,‎ 即A1(1,9);‎ ‎(2)设第一个抛物线为y=a(x﹣1)2+9(a≠0),‎ 把点O(0,0)代入,得到:0=a+9,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 解得 a=﹣9.‎ 所以第一条抛物线的解析式是y=﹣9(x﹣1)2+9;‎ ‎(3)第一条抛物线的顶点坐标是A1(1,9),‎ 第二条抛物线的顶点坐标是A2(3,3),‎ 第三条抛物线的顶点坐标是A3(5,),‎ 由规律可知An (2n﹣1,).‎ 故答案为:(2n﹣1,).‎ ‎ ‎ ‎26.在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.‎ ‎(1)求证:△DEB∽△ACB;‎ ‎(2)当点F与点A重合时(如图①),求线段BD的长;‎ ‎(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.‎ ‎【考点】相似形综合题.‎ ‎【分析】(1)根据垂直的定义得到∠DEB=90°,证明∠ACB=∠DEB,根据相似三角形的判定定理证明即可;‎ ‎(2)根据勾股定理求出AB的长,根据相似三角形的性质得到比例式,代入计算即可;‎ ‎(3)分点F在线段AB上和点F在线段BA的延长线上两种情况,根据相似三角形的性质计算即可.‎ ‎【解答】(1)证明:∵DE⊥AB,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴∠DEB=90°,‎ ‎∴∠ACB=∠DEB,又∠B=∠B,‎ ‎∴△DEB∽△ACB;‎ ‎(2)∵∠ACB=90°,AC=6,BC=8,‎ ‎∴AB==10,‎ 由翻转变换的性质可知,BE=AE=AB=5,‎ ‎∵△DEB∽△ACB,‎ ‎∴=,即=,‎ 解得BD=.‎ 答:线段BD的长为;‎ ‎(3)当点F在线段AB上时,如图2,‎ ‎∵△DEB∽△ACB,‎ ‎∴=,即=,‎ 解得BE=x,‎ ‎∵BE=EF,‎ ‎∴AF=AB﹣2BE,‎ ‎∴y=﹣x+10;‎ 当点F在线段BA的延长线上时,如图3,‎ AF=2BE﹣AB,‎ ‎∴y=x﹣10,‎ 当点F在线段AB上时,‎ ‎∵DE⊥AB,BE=EF,‎ ‎∴DF=DB 要使AF=FD,只要AF=BD即可,即x=﹣x+10,‎ 解得x=,‎ 当点F在线段BA的延长线上时,AF=FD不成立,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 则当BD=时,AF=FD.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2017年3月24日 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料