由莲山课件提供http://www.5ykj.com/ 资源全部免费
相似三角形的判定
学习要求
1.掌握相似三角形的判定定理.
2.能通过证三角形相似,证明成比例线段或进行计算.
课堂学习检测
一、填空题
1.______三角形一边的______和其他两边______,所构成的三角形与原三角形相似.
2.如果两个三角形的______对应边的______,那么这两个三角形相似.
3.如果两个三角形的______对应边的比相等,并且______相等,那么这两个三角形相 似.
4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似.
5.在△ABC和△A′B′C′中,如果∠A=56°,∠B=28°,∠A′=56°,∠C′=28°,那么这两个三角形能否相似的结论是______.理由是________________.
6.在△ABC和△A'B′C′中,如果∠A=48°,∠C=102°,∠A′=48°,∠B′=30°,那么这两个三角形能否相似的结论是______.理由是________________.
7.在△ABC和△A'B′C′中,如果∠A=34°,AC=5cm,AB=4cm,∠A′=34°,A'C′=2cm,A′B′=1.6cm,那么这两个三角形能否相似的结论是______,理由是____________________.
8.在△ABC和△DEF中,如果AB=4,BC=3,AC=6;DE=2.4,EF=1.2,FD=1.6,那么这两个三角形能否相似的结论是____________,理由是__________________.
9.如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对.
第9题图 第10题图
10.如图所示,□ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有______对.
二、选择题
11.如图所示,不能判定△ABC∽△DAC的条件是( )
A.∠B=∠DAC
B.∠BAC=∠ADC
C.AC2=DC·BC
D.AD2=BD·BC
第11题 第12题
12.如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )
A.5 B.8.2
C.6.4 D.1.8
13.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
相似的是( )
三、解答题
14.已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,
(1)图中有哪两个三角形相似?
(2)求证:AC2=AD·AB;BC2=BD·BA;
(3)若AD=2,DB=8,求AC,BC,CD;
(4)若AC=6,DB=9,求AD,CD,BC;
(5)求证:AC·BC=AB·CD.
15.如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.
求证:(1)OD∶OA=OE∶OB;
(2)△ODE∽△OAB;
(3)△ABC∽△DEF.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
综合、运用、诊断
16.如图所示,已知AB∥CD,AD,BC交于点E,F为BC上一点,且∠EAF=∠C.
求证:(1)∠EAF=∠B;
(2)AF2=FE·FB.
17.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.
求证:AB·CD=BE·EC.
18.如图所示,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.
求证:AD·BC=OB·BD.
19.如图所示,在⊙O中,CD过圆心O,且CD⊥AB于D,弦CF交AB于E.
求证:CB2=CF·CE.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
拓展、探究、思考
20.已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.
21.已知:如图,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC为边在Rt△ABC外作等边△ABD和△ACE,试判断△BDH与△AEH是否相似,并说明理由.
22.已知:如图,在△ABC中,∠C=90°,P是AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC于E,点E不与点C重合,若AB=10,AC=8,设AP=x,四边形PECB的周长为y,求y与x的函数关系式.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
答案与提示
测试3
1.平行于,直线,相交.
2.三组,比相等.
3.两组,相应的夹角.
4.两个,两个角对应相等.
5.△ABC∽△A'C'B',因为这两个三角形中有两对角对应相等.
6.△ABC∽△A'B'C'.因为这两个三角形中有两对角对应相等.
7.△ABC∽△A'B'C',因为这两个三角形中,有两组对应边的比相等,且相应的夹角相等.
8.△ABC∽△DFE.因为这两个三角形中,三组对应边的比相等.
9.6对. 10.6对.
11.D. 12.D. 13.A.
14.(1)△ADC∽△CDB,△ADC∽△ACB,△ACB∽△CDB;
(2)略;
(3)
(4)
(5)提示:AC·BC=2S△ABC=AB·CD.
15.提示:(1)OD∶OA=OF∶OC,OE∶OB=OF∶OC;
(2)OD∶OA=OE∶OB,∠DOE=∠AOB,得△ODE∽△OAB;
(3)证DF∶AC=EF∶BC=DE∶AB.
16.略.
17.提示:连结AE、ED,证△ABE∽△ECD.
18.提示:关键是证明△OBC∽△ADB.
∵AB是⊙O的直径,∴∠D=90°.
∵BC是⊙O的切线,∴OB⊥BC.
∴∠OBC=90°.∴∠D=∠OBC.
∵AD∥OC,∴∠A=∠BOC.∴△ADB∽△OBC.
∴AD·BC=OB·BD.
19.提示:连接BF、AC,证∠CFB=∠CBE
20.提示:过C作CM∥BA,交ED于M.
21.相似.提示:由△BHA∽△AHC得再有BA=BD,AC=AE.
则:再有∠HBD=∠HAE,得△BDH∽△AEH.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.提示:可证△APE∽△ACB,则
则
由莲山课件提供http://www.5ykj.com/ 资源全部免费