由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年春季期九年级数学第三次综合训练试题
(考试时间120分钟,赋分120分)
第Ⅰ卷(选择题 共36分)
一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为、、、的四个选项,其中只有一个是正确的.
1.sin60°的值等于( )
A. B. C. D.
2.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
3.实数的值在( )
A. 0和1之间 B. 1和2之间 C. 2和3之间 D. 3和4之间
4.全球海洋总面积约为36105.9万平方公里,用科学记数法表示为( )
A.3.61×108平方公里 B. 3.60×108平方公里C. 361×106平方公里 D. 36100万平方公里
5.甲、乙、丙、丁四位选手各10次射击的平均成绩都是9.2环,其中甲的成绩的方差为0.015,乙的成绩的方差为0.035,丙的成绩的方差为0.025,丁的成绩的方差为0.027,则( )
A.甲的成绩最稳定 B.乙的成绩最稳定 C.丙的成绩最稳定 D.丁的成绩最稳定
第6题
6.如图,AB是⊙O的直径,∠D=35°,则∠BOC的度数为( )
A.120° B. 110° C. 100° D. 70°
7.下列命题中,真命题是( )
A.两条对角线相等的四边形是矩形
B.两条对角线互相垂直的四边形是菱形
C.两条对角线互相垂直且相等的四边形是正方形
D.两条对角线互相平分的四边形是平行四边形
8.一个几何体如图所示,则该几何体的三视图正确的是( )
A.
B.
C.
D.
第8题图
9.某天小明骑自行车上学,途中因自行车发生故障修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是( )
A.学校离家的距离为2000米 B.修车时间为15分钟
C.到达学校时共用时间20分钟 D.自行车发生故障时离家距离为1000米
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
10. 如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( )
A.12cm B. 6cm C. 3cm D. 2cm
第9题图
(第10题图) (第11题图) (第12题图)
11.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和( )
A.大于0 B.等于0 C.小于0 D.不能确定
12.在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.正确的结论有( )
A.4个 B. 3个 C. 2个 D. 1个
第Ⅱ卷(非选择题 共84分)
二、填空题(本大题共6小题,每小题3分,共18分)
13. 分解因式:= .
14.在函数中,的取值范围是 .
15.若,则 .
16.任取不等式组的一个整数解,则能使关于x的方程:2x+k=-1的解为非负数的概率为______.
17.抛物线与y轴交于点A,顶点为B.点P是x轴上的一个动点,当点P的坐标是_______________时,|PA-PB|取得最小值.
(第17题图) (第18题图)
18. 如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是______________.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题:
19.(本题满分10分,每小题5分)
(1)计算:4sin60°+|3﹣|﹣()﹣1+(π﹣2017)0.
(2)解方程组:
20.(本题满分6分)如图,已知△ABC,∠BAC=90°,AB=6,AC=8.
(1)请用尺规过点A作一条线段与BC交于D,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)
(2)求AD的长.
21.(本题满分6分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E.
已知点C的坐标是(6,-1),DE=3.
(1)求反比例函数与一次函数的解析式.
(2)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?
22.(本题满分7分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:
请你根据以上的信息,回答下列问题:
(1) 本次共调查了_____名学生,其中最喜爱戏曲的有_____人;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是______;
(3) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.
23.(本题满分8分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;
(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.
24. (本题满分7分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.
(1) 求证:AD是⊙O的切线;
(2) 如果⊙O的半径是6cm,EC=8cm,求GF的长.
A
O
B
E
C
F
G
D
25.(本题满分11分)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.
(1)求出抛物线的解析式;
(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26. (本题满分10分)如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.
(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;
(2)现将图①中的△CDE绕着点C顺时针旋转,得到图②,AE与
MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;
若不成立,请说明理由;
(3)若图②中的等腰直角三角形变成直角三角形,使BC=AC,CD=CE,如图③,写出PM与PN的数量关系,并加以证明.
图①
图②
图③
第26题图
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
一、1—4 C C B A 5—8 A B D A 9—12 B C A B
二、13. 14. 15. 1 16. 17. 18.(2014,2016)
三、19.(1)解:4sin60°+|3﹣|﹣()﹣1+(π﹣2017)0
=4×+2﹣3﹣2+1
=2+2﹣4
=4﹣4
(2) 解:
由②得,③
代入①得,解这个方程,得.
把代入③得,=1,
∴原方程组的解为.
20.(1)如图,AD为所作.
(2) AD=4.8
21.解:(1)∵点C(6,-1)在反比例函数的图象上, ∴-1=, m=-6 .
∴反比例函数的解析式为.
∵点D在反比例函数的图象上,且DE=3,
∴,∴x=-2 . ∴点D的坐标为(-2,3) .
∵C、D两点在直线上,∴
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解得∴一次函数的解析式为.
(2)当x<-2或0<x<6时,一次函数的值大于反比例函数的值.
22.解: (1)50,3;(2) 72°;(3)2000×8%=160(人).
23.解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,
根据题意,得:,
解得:,
答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;
(2)设购进A型节能灯m只,总费用为W元,
根据题意,得:W=5m+7(50﹣m)=﹣2m+350,
∵﹣2<0,
∴W随x的增大而减小,
又∵m≤3(50﹣m),解得:m≤37.5,
而m为正整数,
∴当m=37时,W最小=﹣2×37+350=276,
此时50﹣37=13,
答:当购买A型灯37只,B型灯13只时,最省钱.
24解:(1)证明:连接OC.
∵CD是⊙O的切线,
∴∠OCD=90°.
∴∠OCA+∠ACD=90°.
∵OA=OC,
∴∠OCA=∠OAC.
∵∠DAC=∠ACD,
∴∠0AC+∠CAD=90°.
∴∠OAD=90°.
∴AD是⊙O的切线.
(2)连接BG;
∵OC=6cm,EC=8cm,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴在Rt△CEO中,OE==10.
∴AE=OE+OA=1.
∵AF⊥ED,
∴∠AFE=∠OCE=90°,∠E=∠E.
∴Rt△AEF∽Rt△OEC.
∴=.
即:=.
∴AF=9.6.
∵AB是⊙O的直径,
∴∠AGB=90°.
∴∠AGB=∠AFE.
∵∠BAG=∠EAF,
∴Rt△ABG ∽Rt△AEF.
∴=.
即:=.
∴AG=7.2.
∴GF=AF-AG=9.6-7.2=2.4(cm) .
A
O
B
E
C
F
G
D
25.解:(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,
∴,解得,
∴抛物线解析式为y=﹣x2+4x;
(2)存在三个点满足题意,理由如下:
当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵A(1,3),
∴D坐标为(1,0);
当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,
∵△ABD是以AB为斜边的直角三角形,
∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,
∴D点坐标为(0,)或(0,);
综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);
(3)如图2,过P作PF⊥CM于点F,
∵PM∥OA,
∴Rt△ADO∽Rt△MFP,
∴==3,
∴MF=3PF,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
在Rt△ABD中,BD=3,AD=3,
∴tan∠ABD=,
∴∠ABD=60°,设BC=a,则CN=a,
在Rt△PFN中,∠PNF=∠BNC=30°,
∴tan∠PNF==,
∴FN=PF,
∴MN=MF+FN=4PF,
∵S△BCN=2S△PMN,
∴a2=2××4PF2,
∴a=2PF,
∴NC=a=2PF,
∴==,
∴MN=NC=×a=a,
∴MC=MN+NC=(+)a,
∴M点坐标为(4﹣a,( +)a),
又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,
解得a=3﹣或a=0(舍去),
OC=4﹣a=+1,MC=2+,
∴点M的坐标为(+1,2+).
26.(1)PM=PN,PM⊥PN. ………2分
(2) ∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,
∠ACB=∠ECD=90°.
∴∠ACB +∠BCE=∠ECD +∠BCE.
∴∠ACE=∠BCD.
∴△ACE≌△BCD.
∴AE=BD,∠CAE=∠CBD. ………4分
又∵∠AOC=∠BOE,
∠CAE=∠CBD,
∴∠BHO=∠ACO=90°. ………5分
第26题图②
∵点P、M、N分别为AD、AB、DE的中点,
∴PM=BD, PM∥BD;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
PN=AE, PN∥AE.
∴PM=PN. ………6分
∴∠MGE+∠BHA=180°.
∴∠MGE=90°.
∴∠MPN=90°.
∴PM⊥PN. ………8分
(3) PM = kPN ………9分
∵△ACB和△ECD是直角三角形,
∴∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∵BC=kAC,CD=kCE,
∴.
第26题图③
∴△BCD∽△ACE.
∴BD = kAE. ………11分
∵点P、M、N分别为AD、AB、DE的中点,
∴PM=BD,PN=AE.
∴PM = kPN . ………12分
由莲山课件提供http://www.5ykj.com/ 资源全部免费