由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年中考冲刺数学试题
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.的值等于( )
A.4 B.﹣4 C.±4 D.
2.函数y=中,自变量x的取值范围为( )
A.x> B.x≠ C.x≠且x≠0 D.x<
3.下列图形中是中心对称图形的有( )个.
A.1 B.2 C.3 D.4
4.下列各式中,正确的是( )
A.2a+3b=5ab B.﹣2xy﹣3xy=﹣xy C.﹣2(a﹣6)=﹣2a+6 D.5a﹣7=﹣(7﹣5a)
5.若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为( )
A.3 B.4 C.5 D.6
6.若y=kx﹣4的函数值y随x的增大而减小,则k的值可能是下列的( )
A.﹣4 B.0 C.1 D.3
6.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是( )
A.2 B.4 C.6 D.8
7.在▱ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.AF=CE B.AE=CF C.∠BAE=∠FCD D.∠BEA=∠FCE
9.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为( )
A.3 B.6 C.3π D.6π
10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B. C. D.
二、填空题(本大题共6小题,每小题4分,共24分)
11.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为 .
12.不等式5x﹣3<3x+5的所有正整数解的和是 .
13.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是 .
14.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于 度.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
15.不等式组的解集是 .
16.如图,△ABC和△DEF有一部分重叠在一起(图中阴影部分),重叠部分的面积是△ABC面积的,是△DEF面积的,且△ABC与△DEF面积之和为26,则重叠部分面积是 .
三、解答题(本大题共3小题,每题6分共18分)
17.解方程:=5.
18.先化简,再求值:÷(﹣),其中a=.
19.如图,已知在△ABC中,AB=AC.
(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).
(2)在(1)中,连接BD,若BD=BC,求∠A的度数.
四、解答题(本大题共3小题,每题7分共21分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20.为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.
体育锻炼时间
人数
4≤x≤6
2≤x<4
43
0≤x<2
15
(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;
(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);
(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.
21.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.
(1)该班男生和女生各有多少人?
(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m到达D点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)
五、解答题(本大题共3小题,每题9分共27分)
23.如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.
(1)求反比例函数的表达式;
(2)根据图象直接写出当mx>时,x的取值范围;
(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
24.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.
(1)求证:AB是⊙O的切线.
(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.
(3)在(2)的条件下,设⊙O的半径为3,求AB的长.
25.如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
参考答案
一.选择题(共10小题)
1. A 2.B 3.B 4.C 5.B 6.A 7.A 8.B 9.B 10.A
二.填空题(共6小题)
11. 1.62×104.12n(m﹣3)2.13. 10.14. 30 .15. 3≤x<4
16. 4.
三.解答题(共3小题)
17.解:方程的两边同乘x(x+3),得
x+3+5x2=5x(x+3),
解得x=.
检验:把x=代入x(x+3)=≠0.
∴原方程的解为:x=.
18.解:原式=2a2+4ab+a2﹣4ab+4b2
=3a2+4b2,
当a=1,b=时;
原式=3×(﹣1)2+4×()2=15.
19.解:(1)如图所示:
(2)解:∵在Rt△ACD中,∠CAD=30°,
∴CD=AD.
∴BC=CD+BD=CD+AD=3CD.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴S△DAC=,S△ABC=.
∴S△DAC:S△ABC=:=1:3.
四.解答题(共3小题)
20.解:(1)由题意可得:
样本扇形图中体育成绩“良好”所对扇形圆心角的度数为:(1﹣15%﹣14%﹣26%)×360°=162°;
(2)∵体育成绩“优秀”和“良好”的学生有:200×(1﹣14%﹣26%)=120(人),
∴4≤x≤6范围内的人数为:120﹣43﹣15=62(人);
故答案为:62;
(3)由题意可得:×14400=7440(人),
答:估计课外体育锻炼时间不少于4小时的学生人数为7440人.
21.解:(1)设该班男生有x人,女生有y人,
依题意得:,解得:.
∴该班男生有27人,女生有15人.
(2)设招录的男生为m名,则招录的女生为(30﹣m)名,
依题意得:50m+45(30﹣m)≥1460,即5m+1350≥1460,
解得:m≥22,
答:工厂在该班至少要招录22名男生.
22.证明;(1)∵△ABC≌△ABD,
∴∠ABC=∠ABD,
∵CE∥BD,
∴∠CEB=∠DBE,
∴∠CEB=∠CBE.
(2))∵△ABC≌△ABD,
∴BC=BD,
∵∠CEB=∠CBE,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴CE=CB,
∴CE=BD
∵CE∥BD,
∴四边形CEDB是平行四边形,
∵BC=BD,
∴四边形CEDB是菱形.
五.解答题(共3小题)
23.解:(1)把A(1,2)代入y=mx得:m=2,
则一次函数解析式是y=2x,
把A(1,2)代入y=得:k=2,
则反比例解析式是y=;
(2)根据图象可得:﹣1<x<0或x>1;
(3)存在,理由为:
如图所示,四边形ABDC为平行四边形,
∴AC=BD,AC∥BD,
∵AC⊥x轴,
∴BD⊥x轴,
由A(1,2),得到AC=2,
∴BD=2,
联立得:,
消去y得:2x=,即x2=1,
解得:x=1或x=﹣1,
∵B(﹣1,﹣2),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴D的坐标(﹣1,﹣4).
24.(1)证明:∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠EAB+∠ABE=90°,
∵∠EAB=∠BDE,∠BDE=∠CBE,
∴∠CBE+∠ABE=90°,即∠ABC=90°,
∴AB⊥BC,
∴BC是⊙O的切线;
(2)证明:∵BD平分∠ABE,
∴∠1=∠2,
而∠2=∠AED,
∴∠AED=∠1,
∵∠FDE=∠EDB,
∴△DFE∽△DEB,
∴DE:DF=DB:DE,
∴DE2=DF•DB;
(3)连结OD,如图,
∵OD=OB,
∴∠2=∠ODB,
而∠1=∠2,
∴∠ODB=∠1,
∴OD∥BE,
∴△POD∽△PBE,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴=,
∵PA=AO,
∴PA=AO=BO,
∴=,即=,
∴PD=4.
25.
解:(1)令y=0得﹣x2﹣x+2=0,
∴x2+2x﹣8=0,
x=﹣4或2,
∴点A坐标(2,0),点B坐标(﹣4,0),
令x=0,得y=2,∴点C坐标(0,2).
(2)由图象①AB为平行四边形的边时,
∵AB=EF=6,对称轴x=﹣1,
∴点E的横坐标为﹣7或5,
∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),
∴以A,B,E,F为顶点的平行四边形的面积=6×=.
②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积=×6×=.
(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,
在RT△CM1N中,CN==,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).
②当M3为等腰三角形的顶角的顶点时,∵直线AC解析式为y=﹣x+2,
∴线段AC的垂直平分线为y=x与对称轴的交点为M3(﹣1.﹣1),
∴点M3坐标为(﹣1,﹣1).
③当点A为等腰三角形的顶角的顶点的三角形不存在.
综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).
由莲山课件提供http://www.5ykj.com/ 资源全部免费