由莲山课件提供http://www.5ykj.com/ 资源全部免费
潍坊市寿光2017年初中学生学业水平第二次模拟考试
数学试题
温馨提示:
1. 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页。满分120分。考试用时120分钟。考试结束后,将试题卷和答题卡一并交回。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上。
3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。答案不能答在试题卷上。
4. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带。不按以上要求作答的答案无效。
第I卷 (选择题 共36分)
一、 选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.
1.比小2015的数是( )
A. B. C. D.2014
2.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )
3.PM2.5是指大气中直径0.0000025米的颗粒物,将0.0000025用科学 记数法表示为( )
A. 2.5× B. 2.5× C. 25× D. 0.25×
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
4. 如图,等腰直角三角板的顶点A,C分别在直线,上.若∥, ,则的度数为( )
A. B. C. D.
5.不等式组的解集在数轴上表示正确的是( )
6.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以 原点为圆心,2为半径的圆的位置关系是( )
A.相交 B.相切 C.相离 D.以上三者都有可能
7.已知a+b=53,a-b=38,则的值为( )
A.15 B.38 C.53 D.2014
8.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中 小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为 ( )
A. B. C. D.
9.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近 人体构造学的研究成果表明,一般情况下人的指距d和身高h成某种 关系.下表是测得的指距与身高的一组数据:
根据上表解决下面这个实际问题:姚明的身高是226厘米,可预测他 的指距约为( )
A.25.3厘米 B.26.3厘米 C.27.3厘米 D.28.3厘米
10.观察图中尺规作图痕迹,下列结论错误的是( )
A.PQ为∠APB的平分线 B.PA=PB
C.点A、B到PQ的距离不相等 D.∠APQ =∠BPQ
11.若抛物线y=x2-x-1与x轴的交点坐标为(m,0),则代数式m2
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
-m+2016的 值为 ( )
A.2014 B.2015 C.2016 D.2017
12. 如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在 线段AB上,连接EF、CF.则下列结论中一定成立的有( ).
①∠DCF=∠BCD;②EF=CF;③;④∠DFE=3∠AEF.
A.1个 B.2个 C.3个 D.4个
第II卷 (非选择题 共84分)
二、 填空题:本大题共6个小题,每小题4分,满分24分.
13. 计算:= .
14. 如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ ABD的度数是 .
15. 如图,已知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC, CD与⊙O相切,切点为D.若CD=,则线段BC的长度等于 .
16. 如右图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为1, 则平行四边形ABCD的面积为
17. 目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行 走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与 小博步行9 000步消耗的能量相同.若每消耗1千卡能量小琼行走的步 数比小博多10步,求小博每消耗1千卡能量需要行走 步.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
18. 如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前 行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平 面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度
为 米.
三、解答题:本大题共6个小题,满分60分. 解答时请写出必要的演推过程.
19.(本小题满分8分)设,
(1) 求与的差;
(2) 若与的值相等,求的值。
20.(本小题满分8分)已知关于x的方程x2+ax+a-2=0.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
21.(本小题满分8分)为了推动阳光体育运动的广泛开展,引导学生走 向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购 买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号, 绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为 ,图①中m的值 为 ;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)求本次调查获取的样本数据的众数和中位数;
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号 运动鞋多少双?
22.(本小题满分8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°,且AB=6,过O点作OE⊥AC,垂足为E.
(1)求OE的长;
(2)若OE的延长线交⊙O于点F,求弦AF,AC和围成的图形(阴影部分)的面积S.
23. (本小题满分8分)如图,在平面直角坐标系中,一次函数与反比例函数的图象交于点A(3,1),且过点B(0,-2).
(1)求反比例函数和一次函数的表达式;
(2)如果点是轴上一点,且的面积是3,求点的坐标.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
24.(本小题满分9分)如图,△ABC中,∠ACB=90°,BC=6,AC=8.点 E与点B在AC的同侧,且AE⊥AC.
⑴ 如图1,点E不与点A重合,连结CE交AB于点P.设AE=,AP =,求y关于x的函数解析式,并写出自变量x的取值范围;
⑵ 是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不 存在,请说明理由;
⑶ 如图2,过点B作BD⊥AE,垂足为.将以点E为圆心,ED为半 径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.
25.(本小题满分11分)如图,抛物线y=x2+bx+c过点A(3,0),B(1, 0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线 向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点 D.
(1)求抛物线的解析式;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)求点P在运动的过程中线段PD长度的最大值;
(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;
(4)在抛物线对称轴上是否存在点M使|MA-MC|最大?若存在,请求出点
M的坐标,若不存在请说明理由.
潍坊市寿光2017年初中学生学业水平第二次模拟考试
数学试题参考答案及评分标准
1.C 2.D 3.B 4.C 5.D 6.A 7.D 8.A 9.C 10.C 11.D 12.C
13.3 14. 30° 15.1 16.12 17.30 18.7
19.(本小题满分10分)
解:(1)A-B= ………………………………………1分
=…………………………………………2分
=……………………………………………3分
=…………………………………………………4分
(2)A=B
……………………………………………………5分
2(x+1)=x ……………………………………………………………6分
2x+2=x
x=-2 ……………………………………………………………7分
经检验x=2是原方程的解。……………………………………………8分.
20.解:
(1)将x=1代入方程得:1+a+a-2=0,所以a=,……………………2分
把a=代入方程得:,
即:,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解得:。……………………………………………………4分
(2)证明:⊿=a2-4×(a-2)= (a-2)2+4,………………………………5分
∵(a-2)2≥0,
∴⊿>0.……………………………………………………………………7分
∴不论a取何实数,该方程都有两个不相等的实数根.……………………8分
21.解:
(1)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,
图①中m的值为100﹣30﹣25﹣20﹣10=15;
故答案为:40;15;…………………………………………………………2分
(2)∵在这组样本数据中,35出现了12次,出现次数最多,
∴这组样本数据的众数为35;………………………………………………3分
∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,
∴中位数为=36;…………………………………………………………4分
(3)∵在40名学生中,鞋号为35的学生人数比例为30%,
∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,
则计划购买200双运动鞋,有200×30%=60双为35号.………………………………8分
22. 解:(1)连结OC.∵∠D和∠AOC分别是所对的圆周角和圆心角,∠D=60°,
∴∠AOC=2∠D=120°.
∵OE⊥AC,
∴∠AOE=∠COE=∠AOC=60°,∠OAE=30°.……………………………………2分
∵AB是⊙O的直径,AB=6,∴OA=3.
∴OE=OA=.…………………………………………………………………4分
(2) ∵OE=OA,
∴OE=EF.
∵OE⊥AC,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AE=EC.
∴△AEF≌△CEO.
∴S阴影=S扇形COF==π.………………………………………………8分
23. 解:(1)∵反比例函数的图象过点A(3,1),
∴∴.
∴反比例函数的表达式为. ………………… 2分;
∵一次函数的图象过点A(3,1)和B(0,-2).∴,
解得:,
∴一次函数的表达式为. ………………… 4分;
(2)令,∴,,
∴一次函数的图象与x轴的交点C的坐标为(2,0).
∵S△ABP = 3,
.∴PC=2,
∴点P的坐标为(0,0)、(4,0). ………………… 8分;
24. 解:⑴ ∵ AE⊥AC,∠ACB=90°,
∴ AE∥BC ,∴,
∵ BC=6,AC=8,∴AB=10,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵ AE=,AP=,
∴ ,
∴ y=(x>0)。…………………………………………………… 3分
⑵ 考虑∠ACB=90°,而∠PAE与∠PEA都是锐角,因此要使△PAE与△ABC相似,只有∠EPA=90°,即CE⊥AB,此时△ABC∽△EAC,则,AE=.
故存在点E,使△ABC∽△EAP,此时AE=.………………………………6分
⑶ 显然点C必在⊙E外部,此时点C到⊙E上点的距离的最小值
为CE-DE.…………………………………………………………7分
设AE=.
①当点E在线段AD上时,ED=,EC=
,
解得:
即⊙E的半径为.……………………………………………………8分
②当点E在线段AD延长线上时, ED=,EC=,
,
解得:。
即⊙E的半径为9.
因此⊙E的半径为9或.………………………………………… 9分
25.解 (1)把点A(3,0)和点B(1,0)代入抛物线y=x2+bx+c,
得:解得
∴y=x2-4x+3.……………………………………………………3分
(2)把x=0代入y=x2-4x+3,得y=3.∴C(0,3).
又∵A(3,0),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
设直线AC的解析式为:y=kx+m,把点A,C的坐标代入得:
∴直线AC的解析式为:y=-x+3.
PD=-x+3-(x2-4x+3)
=-x2+3x=-+.
∵0