七年级数学下4.1.4三角形的高同步练习(北师大版带答案)
加入VIP免费下载

本文件来自资料包: 《七年级数学下4.1.4三角形的高同步练习(北师大版带答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎《认识三角形》练习 一、选择——基础知识运用 ‎1.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是(  )‎ A.角平分线 B.中位线 C.高 D.中线 ‎2.下列说法错误的是(  )‎ A.三角形的角平分线能把三角形分成面积相等的两部分 B.三角形的三条中线,角平分线都相交于一点 C.直角三角形三条高交于三角形的一个顶点 D.钝角三角形的三条高所在直线的交点在三角形的外部 ‎3.角形的角平分线、中线和高(  )‎ A.都是射线 B.都是直线 C.都是线段 D.都在三角形内 ‎4.如图,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,GA⊥AC于A,则△ABC中,AC边上的高为(  )‎ A.AD B.GA C.BE D.CF ‎5.锐角三角形ABC的3条高线相交于点H,其中三角形的个数共有(  )‎ A. 12个 B. 15个 C. 16个 D.18个 二、解答——知识提高运用 ‎6.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD= 。‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎7.如图,BD、CE是△ABC的高,BD和CE相交于点O。‎ ‎(1)图中有哪几个直角三角形?‎ ‎(2)图中有与∠2相等的角吗?请说明理由。‎ ‎(3)若∠4=55°,∠ACB=65°,求∠3,∠5的度数。‎ ‎8.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数。‎ ‎9.如图在△ABC中,CD是高,点E、F、G分别在BC、AB、AC上,且EF⊥AB,∠1=∠2,试判断DG与BC的位置关系?并说明理由。‎ ‎10.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数。‎ ‎11.如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线。‎ ‎(1)求∠DAE的度数;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)指出AD是哪几个三角形的高。‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 参考答案 一、选择——基础知识运用 ‎1.【答案】D ‎【解析】(1)‎ 三角形的角平分线把三角形分成两部分,这两部分的面积比分情况而定;‎ ‎(2)‎ 三角形的中位线把三角形分成两部分,这两部分的面积经计算得:‎ 三角形面积为梯形面积的;‎ ‎(3)‎ 三角形的高把三角形分成两部分,这两部分的面积比分情况而定;‎ ‎(4)‎ 三角形的中线AD把三角形分成两部分,△ABD的面积为•BD•AE,△ACD面积为•CD•AE;‎ 因为AD为中线,所以D为BC中点,所以BD=CD,‎ 所以△ABD的面积等于△ACD的面积。‎ ‎∴三角形的中线把三角形分成面积相等的两部分。‎ 故选D。‎ ‎2.【答案】A ‎【解析】A、三角形的中线把三角形的面积分成相等的两部分,错误;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 B、三角形的三条中线,角平分线都相交于一点,正确;‎ C、直角三角形三条高交于直角顶点,正确;‎ D、钝角三角形的三条高所在直线的交点在三角形的外部,正确。‎ 故选A。‎ ‎3.【答案】C ‎【解析】三角形有三条中线,有三条高线,有三条角平分线,它们都是线段。‎ 故选:C。‎ ‎4.【答案】C ‎【解析】∵AC边上的高是指过AC所对顶点B向AC所在直线所作的垂线 ‎∴在AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,GA⊥AC于A中,‎ 只有BE符合上述条件。‎ 故选C。‎ ‎5.【答案】C ‎【解析】图中有6个直角,每一个直角对应两个直角三角形,‎ 共有12个直角三角形:△AEB、△AEC、△HEB、△HEC、△BFC、△BFA、△HFC、△HFA、△CGA、△CGB、△HGA、△HGB;‎ 三个钝角三角形:△BHA、△CHA、△CHB;‎ 原来的一个锐角三角形:△ABC;‎ 共有16个三角形。‎ 故选C。‎ 二、解答——知识提高运用 ‎6.【答案】在△ABC中,三边的高交于一点,所以CF⊥AB,‎ ‎∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,‎ ‎∵∠ACB=60°,∴∠BCF=45°‎ 在△CDH中,三内角之和为180°,‎ ‎∴∠CHD=45°,‎ 故答案为∠CHD=45°。‎ ‎7.【答案】(1)直角三角形有:△BOE、△BCE、△ACE、△BCD、△COD、△ABD;‎ ‎(2)与∠2相等的角是∠1.‎ 理由如下:∵BD、CE是△ABC的高,‎ ‎∴∠1+∠A=90°,∠2+∠A=90°,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴∠1=∠2,‎ ‎∴与∠2相等的角是∠1;‎ ‎(3)∵∠ACB=65°,BD是高,‎ ‎∴∠3=90°-∠ACB=90°-65°=25°,‎ 在△BOC中,∠BOC=180°-∠3-∠4=180°-25°-55°=100°,‎ ‎∴∠5=∠BOC=100°。‎ ‎8.【答案】∵∠A=50°,∠C=60°‎ ‎∴∠ABC=180°-50°-60°=70°,‎ 又∵AD是高,‎ ‎∴∠ADC=90°,‎ ‎∴∠DAC=180°-90°-∠C=30°,‎ ‎∵AE、BF是角平分线,‎ ‎∴∠CBF=∠ABF=35°,∠EAF=25°,‎ ‎∴∠DAE=∠DAC-∠EAF=5°,‎ ‎∠AFB=∠C+∠CBF=60°+35°=95°,‎ ‎∴∠BOA=∠EAF+∠AFB=25°+95°=120°,‎ ‎∴∠DAC=30°,∠BOA=120°。‎ 故∠DAE=5°,∠BOA=120°。‎ ‎9.【答案】DG与BC的位置关系为平行,理由如下:‎ ‎∵CD是△ABC的高,‎ ‎∴CD⊥AB,‎ 又∵EF⊥AB,‎ ‎∴CD∥EF,‎ ‎∴∠DCB=∠2,‎ 又∠1=∠2,‎ ‎∴∠DCB=∠1,‎ ‎∴DG∥BC,‎ DG与BC的位置关系为平行。‎ ‎10.【答案】∵∠B=26°,∠ACD=56°‎ ‎∴∠BAC=30°‎ ‎∵AE平分∠BAC 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴∠BAE=15°‎ ‎∴∠AED=∠B+∠BAE=41°.‎ ‎11.【答案】(1)∵AD⊥BC于D,‎ ‎∴∠ADB=∠ADC=90°,‎ ‎∵∠ABC=40°,∠C=60°,‎ ‎∴∠BAD=50°,∠CAD=30°,‎ ‎∴∠BAC=50°+30°=80°,‎ ‎∵AE是∠BAC的平分线,‎ ‎∴∠BAE=40°,‎ ‎∴∠DAE=50°-40°=10°。‎ ‎(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高。‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料