【命题报告】
本卷严格依据《2017 年江苏省中考考试大纲》及其说明(以下简称《考试说明》),试卷结构符合《考
试说明》的要求,试卷注重对中学数学主干内容的考查,考点比例合适;试卷结构合理,题型和题量均与
中考试题设置保持一致,试题命制严谨、规范,无科学性问题;试题阅读量适中;参考答案正确规范,评
分参考合理,可操作性强.具有较好的信度和效度,试题难度梯度明显,具有较好的区分度,有利于检测学
生对基础知识的掌握及对学生解题能力的考查.
1 2 3 4 5 6
C B D D B D
1.【参考答案】 C
【详解详析】在数轴上+2 和-2 到原点的距离都是 2,所以选 C.
3.【参考答案】 D
【详解详析】对于 A,当 a ≥0 时, 2aa 才成立;对于 B, 2 3 6()aa ;对于 C, 9 8 3 2 2 ;
选项 D 中的运算是正确的.
4.【参考答案】 D
【详解详析】根据三角形的三边关系定理:两边之和大于第三边,可知两条较短的边长之和大于最长的边
长即可.A 中 2+3=5,故不能构成三角形,错误;B 中 3+3=6,故不能构成三角形,错误;C 中 2+5<8,
故不能构成三角形,错误;D 中 4+5>6,故能构成三角形,正确.故选 D.
5.【参考答案】 B
【详解详析】如图,连接 OA,∵AB=6cm,OC⊥AB 于点 C,∴ 116 3cm22AC AB ,∵⊙O 的半
径为 5cm,
∴由勾股定理可得 OC=4cm,故选 B.
7.【参考答案】 3
【详解详析】 0 3( 5) | 64 | 1 | 4| 1 4 3 .
8.【参考答案】 22 ( )y x y
【详解详析】 2 2 3 2 2 22 4 2 2 ( 2 ) 2 ( )x y xy y y x xy y y x y .
9.【参考答案】 >
【详解详析】∵ 2 3 12 ,∴ 12 13 ,∴ 13 2 3 .故填 >.
10.【参考答案】 1
【详解详析】∵| 2 | 3 0xy ,∴x+2=0,y-3=0,解得 2, 3xy ,
则 2017 2017( ) 1 1xy .
11.【参考答案】 1a 且 2a
【详解详析】由题意知 10x ,可得 1x ,然后去分母得 21x a x ,解得 1xa,根据解为
正数可得 10a ,则 1a ,又 11a ,则 2a .故 a 的取值范围是 1a 且 2a .
12.【参考答案】 5
【详解详析】由根与系数的关系,得 1 2 1 22 2, 1x x x x ,
则 2 2 2
1 2 1 2 1 2 1 2( ) 3 8 3 5x x x x x x x x .
13.【参考答案】 8
【详解详析】由∠B=∠DAC,又找到公共角∠C,得出 CAD CBA△ ∽△ ,∴ AC CD
BC AC ,∵AD 是中线,∴
CD= 1
2
BC,∴
1
42 2
42
BC
BC ,解得 BC=8.
14.【参考答案】 24
5
【详解详析】∵在菱形 ABCD中,BD=6,AC=8,∴ 1 32OB BD, 1 42OA AC,∵AC⊥BD,
∴ 225AB OA OB .∵ 1
2ABCDS AC BD AB EF 菱形 ,∴
1186 2422
55
AC BD
EF AB
.
15.【参考答案】 π
4
【详解详析】∵AB 为直径,∴∠ACB=90°,∵AC=BC= 2 ,∴ ACB△ 为等腰直角三角形,∴OC⊥AB,
∴ AOC△ 和 BOC△ 都是等腰直角三角形,且 AOC BOCSS△ △ , 2 12OA AC,
∴
290π 1 π=360 4AOCSS 阴影部分 扇形 .
17.( 7 分)
【参考答案】 13x (7 分).
【详解详析】
2 5 3( 2)
1
23
xx
xx
①
②
,
由①得 2 5 3 6xx ,即 1x ;(2 分)
由②得3( 1) 2xx ,即3 3 2xx ,得 3x .(5 分)
故 13x .(7 分)
19.(7 分)
【参考答案】 (1)400,补充完整的统计图见详解详析(3 分);(2)B(2 分);(3)1650(2 分).
【详解详析】(1)设抽取的测试成绩对应的学生共有 m 人.
由题意得 60 15%m ,则 400m . (1 分)
补充完整的统计图如下:
(3 分)
(2)∵A 组有 100 人,B 组有 120 人,C 组有 80 人,D 组有 60 人,E 组有 40 人,∴抽取调查的测试成
绩的中位数落在 B 组内.(5 分)
(3)全校测试成绩为优秀的学生大约有3000 (25% 30%) 1650 人.(7 分)
20.(8 分)
【参考答案】 (1)见详解详析(3 分);(2)见详解详析(3 分);(3)(2, 3) (2 分).
【详解详析】(1)如图所示, A B C △ 即为所求.(3 分)
(2)如图所示, A B C △ 即为所求.(6 分)
(3)将 ABC△ 绕原点 O 旋转 180°,A 的对应点 1A 的坐标是(2, 3) .( 8 分)
22.( 8 分)
【参考答案】(1)恰好选中 D 队的概率为 1
3
(4 分);(2)树状图见详解详析,恰好选中 B、C 两队进行
比赛的概率为 1
6
(4 分).
【详解详析】(1)∵已确定 A 队被选中,再从其余三队中随机选取一队,
∴恰好选中 D 队的概率为 1
3
.( 4 分)
(2)画树状图如下:
(6 分)
∵一共有 12 种可能出现的结果,它们都是等可能的,其中恰好选中 B、C 两队进行比赛的有 2 种,
∴恰好选中 B、C 两队进行比赛的概率为 2
12 = 1
6
.( 8 分)
23.( 8 分)
【参考答案】(1) 10 4800(40 90)W x x (3 分);(2)最低总运费为 5200 元,运送方案为:C
地的 100 吨化肥中 40 吨运往 A 地,60 吨运往 B 地,D 地的 50 吨化肥全部运往 A 地(3 分);(3)共有
3 种方案(2 分).
24.(7 分)
【参考答案】(1)证明见详解详析(3 分);(2)证明见详解详析(4 分).
【详解详析】(1)如图,∵DE⊥CP,EF⊥BE,∴∠1+∠3=∠DEC=90°,∠2+∠3=∠FEB=90°,∴∠1=
∠2.(1 分)
∵四边形 ABCD 是正方形,∴∠4+∠6=∠DCB=90°.
在 Rt DEC△ 中,∠4+∠5=90°,∴∠5=∠6,∴ DEF CEB△ ∽△ .(3 分)
(2)∵四边形 ABCD 是正方形,∴AD=DC=BC.∵点 P 为 DA 的中点,∴PD= 1
2 AD= 1
2 DC.
在 Rt PDC△ 中,tan∠4= 1
2
PD
DC
= .
在 Rt DEC△ 中,tan∠4= DE
EC
,∴ 1= 2
DE PD
EC DC
= .(5 分)
∵ DEF CEB△ ∽△ ,∴ DF DE
CB EC ,
而 CB=DC,∴ 1
2
DF
DC
= ,∴点 F 为 DC 的中点.(7 分)
26.( 8 分)
【参考答案】(1)证明见详解详析(2 分);(2)证明见详解详析(2 分);(3)2 2 (4 分).
【详解详析】(1)如图,连接 AB,∵BC 是⊙O 的直径,∴∠BAC=90°.在 Rt ABE△ 中,∵F 是斜边
BE 的中点,
∴ AF FB EF,∴ FBA FAB ,又∵OA OB ,∴ ABO BAO .(1 分)
∵BE 是⊙O 的切线,∴ 90EBO .∵ EBO FBA ABO FAB BAO 90FAO ,
∴AF 是⊙O 的切线.(2 分)
(2)∵BC 是⊙O 的直径,BE 是⊙O 的切线,∴EB⊥BC.又 ∵AD⊥BC,∴AD∥BE,则 BFC DGC△ ∽ △ ,
FEC GAC△ ∽△ ,∴ BF
DG CF
CG
, EF
AG CF
CG
,∴ BF
DG EF
AG .
∵F 是斜边 BE 的中点,∴BF=EF,∴DG=AG.(4 分)
(3)如图,过点 F 作 FH⊥AD 于点 H,∵BD⊥AD,FH⊥AD,∴FH∥BC.由(1)知 BF=AF.由已知,
有 BF=FG,
∴AF=FG,则 AFG△ 是等腰三角形.
∵FH⊥AD,∴AH=GH,∵DG=AG,∴DG=2HG,即 1
2
HG
DG .(6 分)
∵FH ∥BD ,BF∥AD ,∠ FBD=90°,∴四 边 形 BDHF 是 矩 形 , ∴BD=FH ,∵ FH ∥BC , 易 证
HFG DCG△ ∽△ ,
∴ FH
CD = HG
DG
,即 BD
CD = HG
DG = 1
2
.∵⊙O 的半径长为32,∴ 62BC ,∴ BD
CD =
62
BD
BD = 1
2
,
解得 22BD .(8 分)
∵N 与 1N 关于 y 轴对称,N 点坐标为(1,6) ,∴ 1N 的坐标为( 1,6) .
设直线 1MN 的解析式为 1y k x b,把 M, 1N 的坐标代入,得 1
1
6
23
kb
kb
,解得 1 1
5
k
b
,∴直线 1MN
的解析式为 5yx .
令 0x ,得 5y ,∴P 点的坐标为(0,5) .
故在 y 轴上存在点 P,使得 PM PN 的值最小,此时 P 点坐标为(0,5) .(11 分)