华师大版数学九年级上册第23章图形的相似23.5位似图形 同步练习
一、选择题
1、如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB , 若点B坐标为(5,0),则点A的坐标为( )
A、(2,5)
B、(2.5,5)
C、(3,5)
D、(3,6)
2、如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA , 则△ABC与△DEF的面积之比为( )
A、1:2
B、1:4
C、1:5
D、1:6
3、如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A′B′O′是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为( )
A、(0,0)
B、(0,1)
C、(-3,2)
D、(3,-2)
4、如图,△ABC经过位似变换得到△DEF , 点O是位似中心且OA=AD , 则△ABC与△DEF的面积比是( )
A、1:6
B、1:5
C、1:4
D、1:2
5、已知,如图,E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点的坐标( )
A、(-2,1)
B、(2,-1)
C、(2,-1)或(-2,-1)
D、(-2,1)或(2,-1)
6、如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是( )
A、1:6
B、1:5
C、1:4
D、1:2
7、如图,己知△ABC , 任取一点O , 连AO , BO , CO , 并取它们的中点D , E , F , 得△DEF , 则下列说法正确的个数是( )
①△ABC与△DEF是位似图形; ②△ABC与△DEF是相似图形;
③△ABC与△DEF的周长比为1:2;④△ABC与△DEF的面积比为4:1.
A、1
B、2
C、3
D、4
8、如图,线段AB的两个端点坐标分别为A(1,1),B(2,1),以原点O为位似中心,将线段AB放大后得到线段CD.若CD=2,则端点C的坐标为( )
A、(2,2)
B、(2,4)
C、(3,2)
D、(4,2)
9、将三角形三个顶点的横坐标都乘以2,纵坐标不变,则所得三角形与原三角形的关系是( )
A、将原图向左平移两个单位
B、与原点对称
C、纵向不变,横向拉长为原来的二倍
D、关于y轴对称
10、下列说法中:①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A′B′C′D′E′位似,则在五边形中连线组成的△ABC与△A′B′C′也是位似的.正确的个数是( )
A、1
B、2
C、3
D、4
11、如图所示,正方形EFGH是由正方形ABCD经过位似变换得到的,点O是位似中心,E , F , G , H分别是OA , OB , OC , OD的中点,则正方形EFGH与正方形ABCD的面积比是( )
A、1:6
B、1:5
C、1:4
D、1:2
12、如图,菱形ABCD中,对角线AC、BD相交于点O , M、N分别是边AB、AD的中点,连接OM、ON、MN , 则下列叙述正确的是( )
A、△AOM和△AON都是等边三角形
B、四边形MBON和四边形MODN都是菱形
C、四边形AMON和四边形ABCD都是位似图形
D、四边形MBCO和四边形NDCO都是等腰梯形
13、下列说法正确的是( )
A、两个位似图形对应点连线有可能无交点
B、两个位似图形对应点连线交点个数为1或2
C、两个位似图形对应点连线只有一个交点
D、两个位似图形对应点连线交点个数不少于4个
14、用作位似形的方法,可以将一个图形放大或缩小,位似中心( )
A、只能选在原图形的外部
B、只能选在原图形的内部
C、只能选在原图形的边上
D、可以选择任意位置
15、如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是( )
A、四边形ABCD与四边形AEFG是相似图形
B、AD与AE的比是2:3
C、四边形ABCD与四边形AEFG的周长比是2:3
D、四边形ABCD与四边形AEFG的面积比是4:9
二、填空题
16、坐标系中,△ABC的坐标分别是A(-1,2),B(-2,0),C(-1,1),若以原点O为位似中心,将△ABC放大到原来的2倍得到△A′B′C′,那么落在第四象限的A′的坐标是________.
17、直角坐标系中,已知点A(-4,2),B(-2,-2),以原点O为位似中心,把△ABO放大为原来的2倍,则点A的对应点A′的坐标是________.
18、△ABC中,点D、E、F分别是AB、BC、AC的中点,则与△ADF位似的三角形是________.
19、已知点A(0,1),B(-2,0),以坐标原点O为位似中心,将线段AB放大2倍,放大后的线段A′B′与线段AB在同一侧,则两个端点A′,B′的坐标分别为________.
20、将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,ABC的面积等于________;
三、综合题
21、在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2 , 使△A2B2C2与△A1B1C1的相似比为2:1.
22、已知点P为线段AB上一点,射线PM⊥AB , 用直尺和圆规在PM上找一点C , 使得PC2=AP•PB.
23、如图,在平面直角坐标系中,△ABC的三个顶点坐标系分别为A(-2,1),B(-1,4),C(-3,-2)
(1)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A1B1C1 , 并直接写出C1点坐标;
(2)如果点D(a , b)在线段AB上,请直接写出经过(1)的变化后点D的对应点D1的坐标.
24、如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(3,0),B(4,4),C(-2,3),将点O , A , B , C的横坐标、纵坐标都乘以-2.
(1)画出以变化后的四个点为顶点的四边形;
(2)由(1)得到的四边形与四边形OABC位似吗?如果位似,指出位似中心及与原图形的相似比.
25、如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)直接写出△ABC与△A′B′C′的位似比;
(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.
答案解析部分
一、选择题
1、【答案】B
【考点】位似变换
【解析】【解答】∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB , ∴B点与D点是对应点,则位似比为:5:2,
∵C(1,2),
∴点A的坐标为:(2.5,5)
故选:B
【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A点坐标.
2、【答案】B
【考点】位似变换
【解析】【解答】∵以点O为位似中心,将△ABC放大得到△DEF , AD=OA , ∴OA:OD=1:2,
∴△ABC与△DEF的面积之比为:1:4.
故选:B.
【分析】利用位似图形的性质首先得出位似比,进而得出面积比.
3、【答案】C
【考点】位似变换
【解析】解答:如图所示:P点即为所求,
故P点坐标为:(-3,2).
故选:C.
分析:利用位似图形的性质得出连接各对应点,进而得出位似中心的位置.
4、【答案】C
【考点】位似变换
【解析】【解答】∵△ABC经过位似变换得到△DEF , 点O是位似中心且OA=AD , ∴AC∥DF ,
∴△OAC∽△ODF ,
∴AC:DF=OA:OD=1:2,
∴△ABC与△DEF的面积比是1:4.
故选C.
【分析】由△ABC经过位似变换得到△DEF , 点O是位似中心且OA=AD ,
根据位似图形的性质,即可得AC∥DF , 即可求得AC:DF=OA:OD=1:2,然后根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.
5、【答案】D
【考点】位似变换
【解析】【解答】∵E(-4,2),以O为位似中心,按比例尺1:2把△EFO缩小,
∴点E的对应点的坐标为:(-2,1)或(2,-1).
故选D.
【分析】由E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,根据位似图形的性质,即可求得点E的对应点的坐标.
6、【答案】C
【考点】位似变换
【解析】【解答】∵△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,∴两图形的位似之比为1:2,
则△DEF与△ABC的面积比是1:4.
故选C.
【分析】根据两三角形为位似图形,且点O是位似中心,D、E、F分别是OA、OB、OC的中点,求出两三角形的位似比,根据面积之比等于位似比的平方即可求出面积之比.
7、【答案】C
【考点】位似变换
【解析】解答:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,
∵将△ABC的三边缩小的原来的 ,
∴△ABC与△DEF的周长比为2:1,
故③选项错误,
根据面积比等于相似比的平方,
∴④△ABC与△DEF的面积比为4:1.
故选C.
分析:根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
8、【答案】A
【考点】位似变换
【解析】【解答】∵线段AB的两个端点坐标分别为A(1,1),B(2,1),∴AB=1,
∵以原点O为位似中心,将线段AB放大后得到线段CD , CD=2,
∴两图形位似比为:1;2,
∴端点C的坐标为:(2,2).
故选;A.
【分析】利用A , B点坐标,得出AB=1,结合以O为位似中心,将线段AB放大后得到线段CD , CD=2,结合图形得出,则点A的对应点C的坐标是A(1,1)的坐标同时乘以2,因而得到的点C的坐标.
9、【答案】C
【考点】位似变换
【解析】【解答】∵三角形三个顶点的横坐标都乘以2,纵坐标不变,
∴纵向不变,横向拉长为原来的二倍.
故选C.
【分析】三角形三个顶点的横坐标变化,纵坐标不变,即是图形纵向不变,横向变化.
10、【答案】C
【考点】位似变换
【解析】【解答】利用位似的定义可知,位似图形一定是相似图形;但是相似图形不一定是位似图形,因为它是一种特殊的相似,所以①正确②错误,两个位似图形若全等,根据对应点一定相交于一点,可得到位似中心在两个图形之间,③正确;④若五边形ABCDE与五边形A′B′C′D′E′'位似,则在五边形中连线组成的△ABC与△A′B′C′,画出图形,可得它也是位似.④正确.所以①③④正确.
故选C.
【分析】利用位似图形的性质,各边之间的关系,以及对应点的关系可以解决.
11、【答案】C
【考点】位似变换
【解析】解答:∵正方形EFGH是由正方形ABCD经过位似变换得到的,点O是位似中心,∴正方形EFGH∽正方形ABCD ,
∵E , F , G , H分别是OA , OB , OC , OD的中点,
∴EH= AD ,
即位似比为:EH:AD=1:2,
∴正方形EFGH与正方形ABCD的面积比是:1:4.
故选C.
分析:由正方形EFGH是由正方形ABCD经过位似变换得到的,点O是位似中心,E , F , G , H分别是OA , OB , OC , OD的中点,易求得位似比等于EH:AD=1:2,又由相似三角形面积的比等于相似比的平方,即可求得正方形EFGH与正方形ABCD的面积比.
12、【答案】C
【考点】位似变换
【解析】【解答】根据位似图形的定义可知A.O与OM和AM的大小却无法判断,所以无法判断△AMO和△AON是等边三角形,故错误;
B.无法判断BM是否等于OB和BM是否等于OC , 所以也无法判断平行四边形MBON和MODN是菱形,故错误;
C.四边形MBCO和四边形NDCO是位似图形,故此选项正确;
D.无法判断四边形MBCO和NDCO是等腰梯形,故此选项错误;
故选C.
【分析】在Rt△ABO中,根据直角三角形斜边上的中线等于斜边的一半可得,OM=AM=BM , 但AO与OM和AM的大小却无法判断,所以无法判断△AMO和△AON是等边三角形.同样,我们也无法判断BM是否等于OB和BM是否等于OC , 所以也无法判断平行四边形MBON和MODN
是菱形,也无法判断四边形MBCO和NDCO是等腰梯形.根据位似图形的定义可知四边形MBCO和四边形NDCO是位似图形,故本题选C.
13、【答案】C
【考点】位似变换
【解析】【解答】A.两个位似图形对应点连线必有交点,故本选项错误;B.两个位似图形对应点连线只有1个交点,故本选项错误;
C.只有一个交点正确,故本选项正确;
D.交点只有1个,故本选项错误.
故选C.
【分析】位似图形对应点连线必有交点,且交点只有1个.
14、【答案】D
【考点】位似变换
【解析】【解答】位似中心可以选择任意位置.故选D.【分析】用作位似形的方法,可以将一个图形放大或缩小,位似中心可以选择任意位置.
15、【答案】B
【考点】位似变换
【解析】【解答】∵四边形ABCD与四边形AEFG是位似图形;A.四边形ABCD与四边形AEFG一定是相似图形,故正确;
B.AD与AG是对应边,故AD:AE=2:3;故错误;
C.四边形ABCD与四边形AEFG的相似比是2:3,故正确;
D.则周长的比是2:3,面积的比是4:9,故正确.
故选B.
【分析】本题主要考查了位似变换的定义及作图,位似变换就是特殊的相似,且位似图形上任意一对对应点到位似中心的距离之比等于相似比,因而周长的比等于相似比,面积的比等于相似比的平方.
二、填空题
16、【答案】(2,-4)
【考点】位似变换
【解析】【解答】∵A(-1,2),以原点O为位似中心,将△ABC放大到原来的2倍得到△A′B′C′,
∴落在第四象限的A′的坐标是:(2,-4).
故答案为:(2,-4).
【分析】根据位似变换是以原点为位似中心,相似比为k , 那么位似图形对应点的坐标的比等于k或-k , 即可得出A′的坐标.
17、【答案】(-8,4)或(8,-4).
【考点】位似变换
【解析】【解答】∵点A的坐标分别为(-4,2),以原点O为位似中心,把△ABO放大为原来的2倍,
则A′的坐标是:(-8,4)或(8,-4).
故答案为:(-8,4)或(8,-4).
【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k , 那么位似图形对应点的坐标的比等于k或-k , 即可求得答案.
18、【答案】△ABC
【考点】位似变换
【解析】【解答】∵点D、E、F分别是AB、BC、AC的中点,
∴DF∥BC , ED∥AC , EF∥AB ,
∴△ADF∽△ABC , 则△ADF与△ABC是位似图形.
故答案为:△ABC.
【分析】利用三角形中位线定理以及位似变换的定义得出即可.
19、【答案】(0,2)(-4,0).
【考点】位似变换
【解析】【解答】∵以坐标原点O为位似中心,将线段AB放大2倍,且点A(0,1),B(-2,0),
∴两个端点A、B的对应点坐标分别为:(0,2)(-4,0)或(0,-2)(4,0),
∵放大后的线段A′B′与线段AB在同一侧,
∴两个端点A′、B′的坐标分别为:(0,2)(-4,0).
故答案为:(0,2)(-4,0).
【分析】由题意,根据位似图形的性质,即可求得两个端点A′,B′的坐标.
20、【答案】6
【考点】位似变换
【解析】【解答】△ABC的面积为: ×4×3=6;(2)如图,取格点P , 连接PC , 过点A画PC的平行线,与BC交于点Q , 连接PQ与AC相交得点D , 过点D画CB的平行线,与AB相交得点E , 分别过点D、E画PC的平行线,与CB相交得点G , F , 则四边形DEFG即为所求.
故答案为:6;
【分析】△ABC以AB为底,高为3个单位,求出面积即可
三、综合题
21、【答案】(1)解:如图所示:△A1B1C1 , 即为所求;
(2)解:如图所示:△A2B2C2 , 即为所求.
【考点】作图-位似变换
【解析】(1)利用轴对称图形的性质进而得出对应点位置进而画出图形即可;(2)利用位似图形的性质得出对应点位置进而画出图形即可.
22、【答案】解:如图所示:作AB的垂直平分线,以O为圆心, AB为半径作圆,射线PM交⊙O于点C , C点即为所求
【考点】作图-位似变换
【解析】利用垂径定理结合相似三角形的判定与性质得出C点即可.
23、【答案】(1)解:如图所示:△A1B1C1即为所求,C1点坐标为(-6,4);
(2)解:如果点D(a , b)在线段AB上,经过(1)的变化后点D的对应点D1的坐标为;(2a , 2b).
【考点】作图-位似变换
【解析】(1)利用位似比为1:2,进而将各对应点坐标扩大为原来的2倍,进而得出答案;(2)利用(1)中位似比得出对应点坐标关系.
24、【答案】(1)解:如图所示,四边形OA′B′C′即为所求四边形;
(2)解:∵将点O , A , B , C的横坐标、纵坐标都乘以-2可得出四边形OA′B′C′,
∴各对应边的比为2,对应点的连线都过原点,
∴得到的四边形与四边形OABC位似,位似中心是O(0,0),与原图形的相似比为2.
【考点】作图-位似变换
【解析】(1)将点O , A , B , C的横坐标、纵坐标都乘以-2得O(0,0),A′(-6,0),B′(-8,-8),C′(4,-6),顺次连接各点即可;(2)根据位似图形的定义可知得到的四边形与四边形OABC位似,根据图形可得出位似中心及位似比.
25、【答案】(1)解:
图中点O为所求;
(2)解:△ABC与△A′B′C′的位似比等于2:1;
(3)解:△A″B″C″为所求;
A″(6,0);B″(3,-2); C″(4,-4).
【考点】作图-位似变换
【解析】(1)连接CC′并延长,连接BB′并延长,两延长线交于点O;(2)由OB=2OB′,即可得出△ABC与△A′B′C′的位似比为2:1;(3),连接B′O并延长,使OB″=OB′,延长A′O并延长,使OA″=OA′,C′O
并延长,使OC″=OC′,连接A″B″,A″C″,B″C″,则△A″B″C″为所求,从网格中即可得出△A″B″C″各顶点的坐标.