由莲山课件提供http://www.5ykj.com/ 资源全部免费
期末检测题
(时间:120分钟 满分:120分)
一、选择题(每小题3分,共30分)
1.(2016·黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是( D )
2.已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( C )
A.-10 B.4 C.-4 D.10
3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小明参与游戏,如果只随机抽取1张,那么小明抽到好人牌的概率是( D )
A. B. C. D.
4.在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( D )
5.如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形PAOB的形状、大小随之变化,则AB的长度( C )
A.变大 B.变小 C.不变 D.不能确定
,第5题图) ,第7题图) ,第8题图) ,第9题图)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
6.(2016·随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程正确的是( C )
A.20(1+2x)=28.8 B.28.8(1+x)2=20
C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8
7.如图,在平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2,则下列说法正确的是( D )
A.A1的坐标为(3,1) B.S四边形ABB1A1=3 C.B2C=2 D.∠AC2O=45°
8.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为( D )
A.45° B.30° C.75° D.60°
9.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有( C )
A.1个 B.2个 C.3个 D.4个
10.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为( A )
A.1 B.-1 C.2 D.-2
二、填空题(每小题3分,共24分)
11.(2016·江西)如图,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为__17°__.
,第11题图) ,第14题图) ,第15题图) ,第17题图) ,第18题图)
12.若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=__-或1__.
13.若|b-1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是__k≤4且k≠0__.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
14.(2016·葫芦岛)如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为____.
15.(2016·聊城)如图,已知圆锥的高为,高所在直线与母线的夹角为30°,则圆锥的侧面积为__2π__.
16.公路上行驶的汽车急刹车时,刹车距离s(m)与时间t(s)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行__20__m才能停下来.
17.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为2,则a的值是__2+__.
18.(2016·通辽)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出以下结论:①abc0;③4b+cy2;⑤当-3≤x≤1时,y≥0,其中正确的结论是__②③⑤__.(填序号)
三、解答题(共66分)
19.(6分)先化简,再求值:·,其中x满足x2-3x+2=0.
解:原式=·=x,∵x2-3x+2=0,∴(x-2)(x-1)=0,∴x=1或x=2,当x=1时,(x-1)2=0,分式无意义,∴x=2,原式=2
20.(7分)(2016·梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.
(1)求实数k的取值范围;
(2)若方程两实根x1,x2满足x1+x2=-x1x2,求k的值.
解:(1)∵原方程有两个不相等的实数根,∴Δ=(2k+1)2-4(k2+1)>0,解得k>
(2)根据根与系数的关系得x1+x2=-(2k+1),x1x2=k2+1,又∵x1+x2=-x1x2,∴-(2k+1)=-(k2+1),解得k1=0,k2=2,∵k>,∴k的值为2
21.(7分)如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(-6,12),B(-6,0),C(0,6),D(-6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)画出旋转后的小旗A′C′D′B′;
(2)写出点A′,C′,D′的坐标;
(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.
解:(1)图略
(2)点A′(6,0),C′(0,-6),D′(0,0)
(3)∵A(-6,12),B(-6,0),∴AB=12,∴线段BA旋转到B′A′时所扫过的扇形的面积==36π
22.(8分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去,否则小亮去.
(1)用画树状图或列表法求出小颖参加比赛的概率;
(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.
解:(1)画树状图略,∵共有12种等可能的结果,数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为 (2)不公平,∵P(和不小于4)=,∴P(和小于4)≠P(和不小于4),∴游戏不公平.游戏规则可改为:若数字之和为偶数,则小颖去;若数字之和为奇数,则小亮去
23.(8分)如图,某足球运动员站在点O处练习射门,将足球从离地面0.5 m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
+5t+c,已知足球飞行0.8 s时,离地面的高度为3.5 m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44 m,如果该运动员正对球门射门时,离球门的水平距离为28 m,他能否将球直接射入球门?
解:(1)抛物线的解析式为y=-t2+5t+,∴当t=时,y最大=4.5 (2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=-×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门
24.(9分)(2016·云南)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
解:(1)连接OC,∵AC平分∠BAE,∴∠BAC=∠CAE.∵OA=OC,∴∠OCA=∠BAC,∴∠OCA=∠CAE,∴OC∥AE,又AE⊥DC,∴OC⊥DE,∴DE是⊙O的切线
(2)在Rt△AED和Rt△ODC中,∵AE=6,∠D=30°,∴AD=12,OD=2OC,又OA=OB=r,∴OD=2r,∴2r+r=12,解得r=4,即⊙O的半径是4.∵OC=4,则OD=8,CD=4,S阴影=S△ODC-S扇形OBC=×4×4-=8-π
25.(9分)已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕点B旋转到AE=CF时(如图甲),易证AE+CF=EF.当∠MBN绕点B旋转到AE≠CF时,在图乙和图丙这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
又有怎样的数量关系?请写出你的猜想,不需要证明.
解:对于图乙,将△BAE绕点B顺时针旋转120°到△BCE′,易知∠EBE′=120°,F,C,E′三点共线,可证△BEF≌△BE′F,可得AE+CF=E′C+CF=E′F=EF.对于图丙,类似可以得到AE-CF=EF
26.(12分)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是-2.
(1)求这条直线的解析式及点B的坐标;
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
解:(1)y=x+4,B(8,16)
(2)存在.过点B作BG∥x轴,过点A作AG∥y轴,交点为G,∴AG2+BG2=AB2,∵由A(-2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴点C的坐标为(-,0),(0,0),(6,0),(32,0)
(3)设M(a,a2),设MP与y轴交于点Q,在Rt△MQN中,由勾股定理得MN==a2+1,又∵点P与点M纵坐标相同,∴x+4=a2,∴x=,∴点P的横坐标为
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,∴MP=a-,∴MN+3MP=a2+1+3(a-)=-a2+3a+9=-(a-6)2+18,∵-2≤6≤8,∴当a=6时,取最大值18,∴当M的横坐标为6时,MN+3MP的长度的最大值是18
由莲山课件提供http://www.5ykj.com/ 资源全部免费