2017泉州市泉港区中考数学开放性问题专题复习试题(带答案和解析)
加入VIP免费下载

本文件来自资料包: 《2017泉州市泉港区中考数学开放性问题专题复习试题(带答案和解析)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 开放性问题 一、 填空题 ‎1. (2016·山东省济宁市·3分)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件: AH=CB等(只要符合要求即可) ,使△AEH≌△CEB.‎ ‎【考点】全等三角形的判定.‎ ‎【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.‎ ‎【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,‎ ‎∴∠BEC=∠AEC=90°,‎ 在Rt△AEH中,∠EAH=90°﹣∠AHE,‎ 又∵∠EAH=∠BAD,‎ ‎∴∠BAD=90°﹣∠AHE,‎ 在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,‎ ‎∴∠EAH=∠DCH,‎ ‎∴∠EAH=90°﹣∠CHD=∠BCE,‎ 所以根据AAS添加AH=CB或EH=EB;‎ 根据ASA添加AE=CE.‎ 可证△AEH≌△CEB.‎ 故填空答案:AH=CB或EH=EB或AE=CE.‎ 三.解答题 ‎1.(2016·山东省滨州市·14分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C ‎(1)求点A,B,C的坐标;‎ ‎(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【专题】压轴题;函数及其图象.‎ ‎【分析】(1)分别令y=0,x=0,即可解决问题.‎ ‎(2)由图象可知AB只能为平行四边形的边,易知点E坐标(﹣7,﹣)或(5,﹣),由此不难解决问题.‎ ‎(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.‎ ‎【解答】解:(1)令y=0得﹣x2﹣x+2=0,‎ ‎∴x2+2x﹣8=0,‎ x=﹣4或2,‎ ‎∴点A坐标(2,0),点B坐标(﹣4,0),‎ 令x=0,得y=2,∴点C坐标(0,2).‎ ‎(2)由图象可知AB只能为平行四边形的边,‎ ‎∵AB=EF=6,对称轴x=﹣1,‎ ‎∴点E的横坐标为﹣7或5,‎ ‎∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),‎ ‎∴以A,B,E,F为顶点的平行四边形的面积=6×=.‎ ‎(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,‎ 在RT△CM1N中,CN==,‎ ‎∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).‎ ‎②当M3为顶点时,∵直线AC解析式为y=﹣x+1,‎ 线段AC的垂直平分线为y=x,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴点M3坐标为(﹣1,﹣1).‎ ‎③当点A为顶点的等腰三角形不存在.‎ 综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).‎ ‎【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.‎ ‎2.(2016·四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)‎ ‎(1)求抛物线的解析式;‎ ‎(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.‎ ‎(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;‎ ‎(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.‎ ‎【解答】解:‎ ‎(1)把B、C两点坐标代入抛物线解析式可得,解得,‎ ‎∴抛物线解析式为y=x2﹣2x﹣3;‎ ‎(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,‎ 在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,‎ ‎∴A点坐标为(﹣1,0),‎ ‎∴AB=3﹣(﹣1)=4,且OC=3,‎ ‎∴S△ABC=AB•OC=×4×3=6,‎ ‎∵B(3,0),C(0,﹣3),‎ ‎∴直线BC解析式为y=x﹣3,‎ 设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),‎ ‎∵P点在第四限,‎ ‎∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,‎ ‎∴S△PBC=PM•OH+PM•HB=PM•(OH+HB)=PM•OB=PM,‎ ‎∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,‎ ‎∵PM=﹣x2+3x=﹣(x﹣)2+,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴当x=时,PMmax=,则S△PBC=×=,‎ 此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+=,‎ 即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;‎ ‎(3)如图2,设直线m交y轴于点N,交直线l于点G,‎ 则∠AGP=∠GNC+∠GCN,‎ 当△AGB和△NGC相似时,必有∠AGB=∠CGB,‎ 又∠AGB+∠CGB=180°,‎ ‎∴∠AGB=∠CGB=90°,‎ ‎∴∠ACO=∠OBN,‎ 在Rt△AON和Rt△NOB中 ‎∴Rt△AON≌Rt△NOB(ASA),‎ ‎∴ON=OA=1,‎ ‎∴N点坐标为(0,﹣1),‎ 设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,‎ ‎∴直线m解析式为y=x﹣1,‎ 即存在满足条件的直线m,其解析式为y=x﹣1.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、二次函数的最值、相似三角形的判定、全等三角形的判定和性质等.在(2)中确定出PM的值最时四边形ABPC的面积最大是解题的关键,在(3)中确定出满足条件的直线m的位置是解题的关键.本题考查知识点较多,综合性较强,特别是第(2)问和第(3)问难度较大.‎ ‎3.(2016·四川内江)(12分)如图15,已知抛物线C:y=x2-3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.‎ ‎(1)求m的值;‎ ‎(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=-3x+b交于点P,且+=,求b的值;‎ ‎(3)在 (2)的条件下,设直线l1与y轴交于点Q,问:是否存在实数k使S△APQ=S△BPQ,若存在,求k的值;若不存在,说明理由.‎ x y O l1‎ Q P B A l 图15‎ x y O l1‎ Q P B A l 答案图 C E D ‎[考点]二次函数与一元二次方程的关系,三角形的相似,推理论证的能力。‎ 解:(1)∵当k=1时,抛物线C与直线l只有一个公共点,‎ ‎∴方程组有且只有一组解. 2分 消去y,得x2-4x+m=0,所以此一元二次方程有两个相等的实数根.‎ ‎∴△=0,即(-4)2-‎4m=0.‎ ‎∴m=4. 4分 ‎(2)如图,分别过点A,P,B作y轴的垂线,垂足依次为C,D,E,‎ 则△OAC∽△OPD,∴=.‎ 同理,=.‎ ‎∵+=,∴+=2.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴+=2.‎ ‎∴+=,即=. 5分 解方程组得x=,即PD=. 6分 由方程组消去y,得x2-(k+3)x+4=0.‎ ‎∵AC,BE是以上一元二次方程的两根,‎ ‎∴AC+BE=k+3,AC·BE=4. 7分 ‎∴=.‎ 解得b=8. 8分 ‎(3)不存在.理由如下: 9分 假设存在,则当S△APQ=S△BPQ时有AP=PB,‎ 于是PD-AC=PE-PD,即AC+BE=2PD.‎ 由(2)可知AC+BE=k+3,PD=,‎ ‎∴k+3=2×,即(k+3)2=16.‎ 解得k=1(舍去k=-7). 11分 当k=1时,A,B两点重合,△QAB不存在.‎ ‎∴不存在实数k使S△APQ=S△BPQ. 12分 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料