由莲山课件提供http://www.5ykj.com/ 资源全部免费
2016-2017学年山东省枣庄市台儿庄区九年级(上)期中数学模拟试卷(四)
一、选择题(共6小题,每小题3分,满分18分)
1.一元二次方程x2﹣6x﹣5=0配方可变形为( )
A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4
2.一元二次方程(x+1)2﹣2(x﹣1)2=7的根的情况是( )
A.无实数根 B.有一正根一负根
C.有两个正根 D.有两个负根
3.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )
A.115° B.120° C.130° D.140°
4.2015年某县GDP总量为1000亿元,计划到2017年全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为( )
A.1.21% B.8% C.10% D.12.1%
5.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )
A.7 B.10 C.11 D.10或11
6.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为( )
A. B.2 C. D.10﹣5
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
二、填空题(共10小题,每小题3分,满分30分)
7.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是 .
8.已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是 .
9.关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是 .
10.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为 .
11.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为 .
12.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
13.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得 .
14.已知k===,则k的值为 .
15.如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为 .
16.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是 .
三、解答题(共6小题,满分0分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
17.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.
(1)请你用画树状图法或列举法,列出所有可能的结果;
(2)求两人再次成为同班同学的概率.
18.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
(1)求证:△ABF≌△EDF;
(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.
19.关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.
(1)求m的取值范围;
(2)若2(x1+x2)+x1x2+10=0,求m的值.
20.如图,在矩形ABCD中,已知AD>AB,在边AD上取点E,连结CE,过点E作EF⊥CE,与边AB的延长线交于点F.
(1)证明:△AEF∽△DCE.
(2)若AB=2,AE=3,AD=7,求线段AF的长.
21.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2016-2017学年山东省枣庄市台儿庄区泥沟中学九年级(上)期中数学模拟试卷(四)
参考答案与试题解析
一、选择题(共6小题,每小题3分,满分18分)
1.一元二次方程x2﹣6x﹣5=0配方可变形为( )
A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4
【考点】解一元二次方程-配方法.
【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.
【解答】解:x2﹣6x﹣5=0,
x2﹣6x=5,
x2﹣6x+9=5+9,
(x﹣3)2=14,
故选:A.
2.一元二次方程(x+1)2﹣2(x﹣1)2=7的根的情况是( )
A.无实数根 B.有一正根一负根
C.有两个正根 D.有两个负根
【考点】根的判别式;解一元二次方程-因式分解法;根与系数的关系;抛物线与x轴的交点.
【分析】直接去括号,进而合并同类项,求出方程的根即可.
【解答】解:∵(x+1)2﹣2(x﹣1)2=7,
∴x2+2x+1﹣2(x2﹣2x+1)=7,
整理得:﹣x2+6x﹣8=0,
则x2﹣6x+8=0,
(x﹣4)(x﹣2)=0,
解得:x1=4,x2=2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故方程有两个正根.
故选:C.
3.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )
A.115° B.120° C.130° D.140°
【考点】翻折变换(折叠问题).
【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.
【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,
∴∠BFE=∠EFB',∠B'=∠B=90°,
∵∠2=40°,
∴∠CFB'=50°,
∴∠1+∠EFB'﹣∠CFB'=180°,
即∠1+∠1﹣50°=180°,
解得:∠1=115°,
故选A.
4.2015年某县GDP总量为1000亿元,计划到2017年全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为( )
A.1.21% B.8% C.10% D.12.1%
【考点】一元二次方程的应用.
【分析】
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
设该县这两年GDP总量的平均增长率为x,根据:2015年某县GDP总量×(1+增长百分率)2=2017年全县GDP总量,列一元二次方程求解可得.
【解答】解:设该县这两年GDP总量的平均增长率为x,根据题意,
得:1000(1+x)2=1210,
解得:x1=﹣2.1(舍),x2=0.1=10%,
即该县这两年GDP总量的平均增长率为10%,
故选:C.
5.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )
A.7 B.10 C.11 D.10或11
【考点】解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.
【分析】把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.
【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0,
解得m=6,
则原方程为x2﹣7x+12=0,
解得x1=3,x2=4,
因为这个方程的两个根恰好是等腰△ABC的两条边长,
①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;
②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.
综上所述,该△ABC的周长为10或11.
故选:D.
6.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B.2 C. D.10﹣5
【考点】勾股定理.
【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.
【解答】解:如图,延长BG交CH于点E,
在△ABG和△CDH中,
,
∴△ABG≌△CDH(SSS),
AG2+BG2=AB2,
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,
,
∴△ABG≌△BCE(ASA),
∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,
∴GE=BE﹣BG=8﹣6=2,
同理可得HE=2,
在RT△GHE中,GH===2,
故选:B.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
二、填空题(共10小题,每小题3分,满分30分)
7.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是 .
【考点】列表法与树状图法.
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到一男一女的情况,再利用概率公式即可求得答案.
【解答】解:画树状图如下:
由树状图可知共有20种等可能性结果,其中抽到一男一女的情况有12种,
所以抽到一男一女的概率为P(一男一女)=,
故答案为:.
8.已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是 或 .
【考点】相似三角形的判定与性质;平行四边形的性质.
【分析】分两种情况:①当点E在线段AD上时,由四边形ABCD是平行四边形,可证得△EFD∽△CFB,求出DE:BC=2:3,即可求得EF:FC的值;
②当点E在射线DA上时,同①得:△EFD∽△CFB,求出DE:BC=4:3,即可求得EF:FC的值.
【解答】解:∵AE=AD,
∴分两种情况:
①当点E在线段AD上时,如图1所示
∵四边形ABCD是平行四边形,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AD∥BC,AD=BC,
∴△EFD∽△CFB,
∴EF:FC=DE:BC,
∵AE=AD,
∴DE=2AE=AD=BC,
∴DE:BC=2:3,
∴EF:FC=2:3;
②当点E在线段DA的延长线上时,如图2所示:
同①得:△EFD∽△CFB,
∴EF:FC=DE:BC,
∵AE=AD,
∴DE=4AE=AD=BC,
∴DE:BC=4:3,
∴EF:FC=4:3;
综上所述:EF:FC的值是或;
故答案为:或.
9.关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是 m> .
【考点】根与系数的关系;根的判别式;解一元一次不等式.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【分析】设x1、x2为方程x2+2x﹣2m+1=0的两个实数根.由方程有实数根以及两根之积为负可得出关于m的一元一次不等式组,解不等式组即可得出结论.
【解答】解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,
由已知得:,即
解得:m>.
故答案为:m>.
10.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为 .
【考点】矩形的性质;线段垂直平分线的性质;勾股定理.
【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF,根据勾股定理求出OF,根据三角形的面积公式计算即可.
【解答】解:∵四边形ABCD是矩形,
∴∠A=90°,又AB=6,AD=BC=8,
∴BD==10,
∵EF是BD的垂直平分线,
∴OB=OD=5,∠BOF=90°,又∠C=90°,
∴△BOF∽△BCD,
∴=,即=,
解得,BF=,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
则OF==,
则△BOF的面积=×OF×OB=,
故答案为:.
11.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为 .
【考点】相似三角形的判定与性质.
【分析】直接利用平行线分线段成比例定理得出==,进而求出答案.
【解答】解:∵DE∥BC,EF∥AB,
∴==,
∵AB=8,BD=3,BF=4,
∴=,
解得:FC=.
故答案为:.
12.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是 (5,4) .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】菱形的性质;坐标与图形性质.
【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,
∴AB=5,
∴DO=4,
∴点C的坐标是:(5,4).
故答案为:(5,4).
13.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得 x2﹣70x+825=0 .
【考点】由实际问题抽象出一元二次方程.
【分析】本题设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.
【解答】解:由题意得:(80﹣2x)(60﹣2x)=1500
整理得:x2﹣70x+825=0,
故答案为:x2﹣70x+825=0.
14.已知k===,则k的值为 2或﹣1 .
【考点】比例的性质.
【分析】根据等比性质即可得出结论.
【解答】解:(1)当a+b+c≠0时,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵k===,
∴==2,
∴k=2.
(2)当a+b+c=0时,a+b=﹣c,b+c=﹣a,a+c=﹣b,
则k====﹣1.
故答案为:2或﹣1.
15.如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为 6 .
【考点】翻折变换(折叠问题).
【分析】根据折叠的性质求出AF=CF,根据勾股定理得出关于CF的方程,求出CF,求出BF,根据面积公式求出即可.
【解答】解:∵将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG,
∴FG是AC的垂直平分线,
∴AF=CF,
设AF=FC=x,
在Rt△ABF中,有勾股定理得:AB2+BF2=AF2,
42+(8﹣x)2=x2,
解得:x=5,
即CF=5,BF=8﹣5=3,
∴△ABF的面积为×3×4=6,
故答案为:6.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
16.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是 (2n﹣1,2n﹣1) .
【考点】一次函数图象上点的坐标特征;正方形的性质.
【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.
【解答】解:∵y=x﹣1与x轴交于点A1,
∴A1点坐标(1,0),
∵四边形A1B1C1O是正方形,
∴B1坐标(1,1),
∵C1A2∥x轴,
∴A2坐标(2,1),
∵四边形A2B2C2C1是正方形,
∴B2坐标(2,3),
∵C2A3∥x轴,
∴A3坐标(4,3),
∵四边形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,
∴Bn坐标(2n﹣1,2n﹣1).
故答案为(2n﹣1,2n﹣1).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题(共6小题,满分0分)
17.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.
(1)请你用画树状图法或列举法,列出所有可能的结果;
(2)求两人再次成为同班同学的概率.
【考点】列表法与树状图法.
【分析】(1)画树状图法或列举法,即可得到所有可能的结果;
(2)由(1)可知两人再次成为同班同学的概率.
【解答】解:
(1)画树状图如下:
由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;
(2)由(1)可知两人再次成为同班同学的概率==.
18.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
(1)求证:△ABF≌△EDF;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.
【考点】翻折变换(折叠问题);全等三角形的判定;菱形的判定.
【分析】(1)因为△BCD关于BD折叠得到△BED,显然△BCD≌△BED,得出CD=DE=AB,∠E=∠C=∠A=90°.
再加上一对对顶角相等,可证出△ABF≌△EDF;
(2)利用折叠知识及菱形的判定可得出四边形BMDF是菱形.
【解答】(1)证明:由折叠可知,CD=ED,∠E=∠C.
在矩形ABCD中,AB=CD,∠A=∠C.
∴AB=ED,∠A=∠E.
∵∠AFB=∠EFD,
∴△AFB≌△EFD.
(2)解:四边形BMDF是菱形.
理由:由折叠可知:BF=BM,DF=DM.
由(1)知△AFB≌△EFD,∴BF=DF.
∴BM=BF=DF=DM.
∴四边形BMDF是菱形.
19.关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.
(1)求m的取值范围;
(2)若2(x1+x2)+x1x2+10=0,求m的值.
【考点】根的判别式;根与系数的关系.
【分析】(1)因为方程有两个实数根,所以△≥0,据此即可求出m的取值范围;
(2)根据一元二次方程根与系数的关系,将x1+x2=﹣3,x1x2
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
=m﹣1代入2(x1+x2)+x1x2+10=0,解关于m的方程即可.
【解答】解:(1)∵方程有两个实数根,
∴△≥0,
∴9﹣4×1×(m﹣1)≥0,
解得m≤;
(2)∵x1+x2=﹣3,x1x2=m﹣1,
又∵2(x1+x2)+x1x2+10=0,
∴2×(﹣3)+m﹣1+10=0,
∴m=﹣3.
20.如图,在矩形ABCD中,已知AD>AB,在边AD上取点E,连结CE,过点E作EF⊥CE,与边AB的延长线交于点F.
(1)证明:△AEF∽△DCE.
(2)若AB=2,AE=3,AD=7,求线段AF的长.
【考点】相似三角形的判定与性质.
【分析】(1)由四边形ABCD为矩形,于是得到∠A=∠D=90°,根据垂直的定义得到∠AEF+∠DEC=90°,于是得到∠F=∠DEC,即可得到结论;
(2)由四边形ABCD为矩形,得到DC=AB=2,求出ED=AD﹣AE=4,根据相似三角形的性质得到,代入数据即可得到结论.
【解答】(1)证明:∵四边形ABCD为矩形,
∴∠A=∠D=90°,
∵CE⊥EF,
∴∠AEF+∠DEC=90°,
又∵∠F+∠AEF=90°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠F=∠DEC,
∴△AEF∽△DCE;
(2)解:∵四边形ABCD为矩形,
∴DC=AB=2,
∵AE=3,AD=7,
∴ED=AD﹣AE=4,
∵△AEF∽△DCE,
∴,
∴,
∴AF=6.
21.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
【考点】平行四边形的判定与性质;角平分线的性质.
【分析】(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.
【解答】解:(1)四边形EBGD是菱形.
理由:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB中,
,
∴△EFD≌△GFB,
∴ED=BG,
∴BE=ED=DG=GB,
∴四边形EBGD是菱形.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,
在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,
∴EM=BE=,
∵DE∥BC,EM⊥BC,DN⊥BC,
∴EM∥DN,EM=DN=,MN=DE=2,
在RT△DNC中,∵∠DNC=90°,∠DCN=45°,
∴∠NDC=∠NCD=45°,
∴DN=NC=,
∴MC=3,
在RT△EMC中,∵∠EMC=90°,EM=.MC=3,
∴EC===10.
∵HG+HC=EH+HC=EC,
∴HG+HC的最小值为10.
22.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.
【考点】旋转的性质;正方形的性质.
【分析】(1)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AEQ=∠AEF,即可得出答案;
(2)利用(1)中所求,再结合勾股定理得出答案.
【解答】证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,
∴QB=DF,AQ=AF,∠BAQ=∠DAF,
∵∠EAF=45°,
∴∠DAF+∠BAE=45°,
∴∠QAE=45°,
∴∠QAE=∠FAE,
在△AQE和△AFE中
,
∴△AQE≌△AFE(SAS),
∴∠AEQ=∠AEF,
∴EA是∠QED的平分线;
(2)由(1)得△AQE≌△AFE,
∴QE=EF,
在Rt△QBE中,
QB2+BE2=QE2,
则EF2=BE2+DF2.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年2月13日
由莲山课件提供http://www.5ykj.com/ 资源全部免费