由莲山课件提供http://www.5ykj.com/ 资源全部免费
北师大版数学九年级下册 第二章 全章测试题
一、选择题(3分×10=30分)
1.(2013,益阳)抛物线y=2(x-3)2+1的顶点坐标是( )
A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1)
2.若二次函数y=x2+bx+4配方后为y=(x-2)2+k,则b、k的值分别为( )
A.0,5 B.0,1 C.-4,5 D.-4,0
3.(2013,衢州)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x-1)2-4,则b,c的值分别为( )
A.b=2,c=-6 B.b=2,c=0
C.b=-6,c=8 D.b=-6,c=2
4.已知二次函数y=-x2-7x+,若自变量x分别取x1、x2、x3,且0<x1<x2<x3,则对应的函数值y1、y2、y3的大小关系正确的是( )
A.y1>y2>y3 B.y1<y2<y3 C.y2>y3>y1 D.y2<y3<y1
5.已知抛物线y=x2-2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是( )
6.某市烟花厂为该市4.18烟花三月经贸旅游特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-t2+20t+1.若这种礼炮点火开空到最高点处引爆,则从点火升空到引爆需要的时间为( )
A.3s B.4s C.5s D.6s
7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2-2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )
A.2 B.4 C.8 D.16
8.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )
A.abc<0
B.-3a+c<0
C.b2-4ac≥0
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c
9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是( )
A.k<-3 B.k>-3 C.k<3 D.k>3
10.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可以用图象表示为( )
二、填空题(3分×10=30分)
11.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为____________
12.如图,对称轴平行于y轴的抛物线与x轴交于(1,0)、(3,0)两点,则它的对称轴为____________________.
13.已知下列函数:①y=x2;②y=-x2;③y=(x-1)2+2.其中图象通过平移可以得到函数y=x2+2x-3的图象的有_____________(填写所有正确选项的序号).
14.二次函数y=x2-(m-4)x-m的图象与x轴的两个交点关于y轴对称,则其顶点坐标为___________.
15.小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s=v2,一辆小汽车速度为100km/h,在前方80m处停放一辆故障车,此时刹车_______(填“会”或“不会”)有危险.
16.已知二次函数y=-x2+4,当-2≤x≤3时,函数的最小值是_____,最大值是____.
17.开口向下的抛物线y=(m2-2)x2+2mx+1的对称轴经过点(-1,3),则m=_____.
18.请选择一组你喜欢的a、b、c的值,使二次函数y=ax2+bx+c(a≠0)的图象同时满足下列条件:(1)开口向下;(2)当x<2时,y随x的增大而增大;当x>2时,y随x的增大而减小,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
这样的二次函数的解析式可以是__________________________________________.
19.2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图),若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系y=-x2+x+,则羽毛球飞出的水平距离为__________米.
20.如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1、A2、A3…An,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1、M2、M3、…Mn,…都在直线L:y=x上;②抛物线依次经过点A1、A2、A3…An、….则顶点M2014的坐标为______________.
三、解答题(共60分)
21.(7分)二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)求b、c的值;
(2)求出该二次函数图象的顶点坐标和对称轴;
(3)画出二次函数y=x2+bx+c的图象.
22.(8分)已知函数y=mx2-6x+1(m是常数).
(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求m的值.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.(8分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求△OAB的面积;
(2)若抛物线y=-x2-2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位长度,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).
24.(8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
25.(8分)如图,矩形ABCD的两边长AB=18cm,AD=4cm.点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,设运动时间为x秒,△PBQ的面积为y(cm2).
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26.(9分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种工具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元.
请比较哪种方案的最大利润更高,并说明理由.
27.(12分)如图,已知抛物线y=x2-x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.
(1)直接写出A、D、C三点的坐标;
(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;
(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
答案:
一、
1---10 ADBAA BBBDB
二、
11. y=a(1+x)2
12. 直线x=2
13. ①③
14. (0,-4)
15. 会
16. -5 4
17. -1
18. 答案不唯一,只要满足b=-4a,a<0即可,如y=-x2+4x+3,y=-2x2+8x-3等.
19. 5
20. (4027,4027)
三
21. 解:(1)b=-4,c=3
(2) (2,-1),x=2
(3)画图略
22. 解:(1)当x=0时,y=1.所以不论m为何值,函数y=mx2-6x+1的图象都经过y轴上的一个定点(0,1)
(2)①当m=0时,函数y=-6x+1的图象与x轴只有一个交点;②当m≠0时,若函数y=mx2-6x+1的图象与x轴只有一个交点,则方程mx2-6x+1=0有两个相等的实数根,所以(-6)2-4m=0,m=9.综上可知,若函数y=mx2-6x+1的图象与x轴只有一个交点,则m的值为0或9.
23. 解:(1)4
(2)①c=4;②∵y=-x2-2x+4=-(x+1)2+5,∴抛物线顶点D的坐标是(-1,5),AB的中点E的坐标是(-1,4),OA的中点F的坐标是(-1,2),∴m的取值范围为1<m<3
24. 解:(1)y=-x+180
(2)W=(x-100)y=(x-100)(-x+180)
=-x2+280x-18000=-(x-140)2+1600;
当x=140,W最大=1600,
∴售价定为140元/件时,每天最大利润W=1600元.
25. 解:(1)y=-x2+9x(0<x≤4)
(2)y=-(x-)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,
∴当x=4时,y最大值=20,即△PBQ的面积的最大值是20cm2.
26. 解:(1)w=(x-20)[250-10(x-25)]=-10(x-20)(x-50)=-10x2+700x-10000 (2)∵w=-10x2+700x-10000=-10(x-35)2+2250,∴当x=35时,w取到最大值2250.即销售单价为35元时,每天销售利润最大,最大利润为2250元 (3)∵w=-10(x-35)2+2250,∴函数图象是以x=35为对称轴且开口向下的抛物线.∴对于方案A,20<x≤30,此时w随x的增大而增大,∴x=30时,w取到最大值2000.∴
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
当采用方案A时,销售单价为30元可获得最大利润为2000元;对于方案B,则有解得45≤x≤49.此时w随x的增大而减小.故当x=45时,w取到最大值1250,∴当采用方案B时,销售单价为45元可获得最大利润为1250元.两者比较,还是方案A的最大利润更高.
27. 解:(1)∵y=x2-x-3,∴当y=0时,x2-x-3=0,解得x1=-2,x2=4.当x=0,y=-3.∴A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3) (2)∵y=x2-x-3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,-3),∴M点坐标为(2,-3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=3时,x2-x-3=3,解得x1=1+,x2=1-,∴M点坐标为(1+,3)或(1-,3).综上所述,所求M点坐标为(2,-3)或(1+,3)或(1-,3)
(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(-2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,-3),∴直线AB的解析式为y=x-6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,-3)代入,得n=-3,∴直线CP2的解析式为y=x-3.∵点P2在抛物线y=x2-x-3上,∴x2-x-3=x-3,化简得:x2-6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(-2,0)或(6,6).
由莲山课件提供http://www.5ykj.com/ 资源全部免费