天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
2012年中考数学压轴题精选6
【051】如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF·AC,cos∠ABD=,AD=12.
⑴求证:△ANM≌△ENM;
⑵求证:FB是⊙O的切线;
⑶证明四边形AMEN是菱形,并求该菱形的面积S.
【052】如图,抛物线与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.
(1)求C点的坐标及抛物线的解析式;
(2)将△BCH绕点B按顺时针旋转90°后 再沿x轴对折得到
△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.
【053】已知直线与轴轴分别交于点A和点B,点B的坐标为(0,6)
(1)求的值和点A的坐标;
(2)在矩形OACB中,点P是线段BC上的一动点,直线PD⊥AB于点D,与轴交于点E,设BP=,梯形PEAC的面积为。
①求与的函数关系式,并写出的取值范围;
②⊙Q是△OAB的内切圆,求当PE与⊙Q相交的弦长为2.4时点P的坐标。
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
C
M
O
x
y
1
2
3
4
图7
A
1
B
D
【054】在直角坐标平面内,为原点,点的坐标为,点的坐标为,直线轴(如图7所示).点与点关于原点对称,直线(为常数)经过点,且与直线相交于点,联结.
(1)求的值和点的坐标;
(2)设点在轴的正半轴上,若是等腰三角形,求点的坐标;
(3)在(2)的条件下,如果以为半径的圆与圆外切,求圆的半径.
【055】如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标; (2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
B
A
O
y
x
【056】如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
O
x
y
N
C
D
E
F
B
M
A
【057】如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.
(1)求抛物线的解析式;
(2)抛物线的对称轴交轴于点,连结,并延长
交圆于,求的长.
(1) 过点作圆的切线交的延长线于点,
(2) 判断点是否在抛物线上,说明理由.
【058】如图①, 已知抛物线(a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C.
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
【059】如图所示,已知在直角梯形中,轴于点.动点从点出发,沿轴正方向以每秒1个单位长度的速度移动.过点作垂直于直线,垂足为.设点移动的时间为秒(),
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
与直角梯形重叠部分的面积为.
(1)求经过三点的抛物线解析式;
(2)求与的函数关系式;
(3)将绕着点顺时针旋转,是否存在,使得的顶点或在抛物线上?若存在,直接写出的值;若不存在,请说明理由.
2
O
A
B
C
x
y
1
1
3
P
第26题图
Q
【060】如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=,求矩形ABCD的面积.
A
B
C
D
y
P
x
O
(第23题图)
答案:
【051】⑴证明:∵BC是⊙O的直径
∴∠BAC=90o
又∵EM⊥BC,BM平分∠ABC,
∴AM=ME,∠AMN=EMN
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
又∵MN=MN,
∴△ANM≌△ENM
⑵∵AB2=AF·AC
∴
又∵∠BAC=∠FAB=90o
∴△ABF∽△ACB
∴∠ABF=∠C
又∵∠FBC=∠ABC+∠FBA=90o
∴FB是⊙O的切线
⑶由⑴得AN=EN,AM=EM,∠AMN=EMN,
又∵AN∥ME,∴∠ANM=∠EMN,
∴∠AMN=∠ANM,∴AN=AM,
∴AM=ME=EN=AN
∴四边形AMEN是菱形
∵cos∠ABD=,∠ADB=90o
∴
设BD=3x,则AB=5x,,由勾股定理
而AD=12,∴x=3
∴BD=9,AB=15
∵MB平分∠AME,∴BE=AB=15
∴DE=BE-BD=6
∵ND∥ME,∴∠BND=∠BME,又∵∠NBD=∠MBE
∴△BND∽△BME,则
设ME=x,则ND=12-x,,解得x=
∴S=ME·DE=×6=45
【052】解:(1)∵四边形OBHC为矩形,∴CD∥AB,
又D(5,2), ∴C(0,2),OC=2 .
∴ 解得
∴抛物线的解析式为: …… 4分
(2)点E落在抛物线上. 理由如下:……… 5分
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
由y = 0,得. 解得x1=1,x2=4. ∴A(4,0),B(1,0).
∴OA=4,OB=1. 由矩形性质知:CH=OB=1,BH=OC=2,∠BHC=90°,
由旋转、轴对称性质知:EF=1,BF=2,∠EFB=90°,∴点E的坐标为(3,-1).
把x=3代入,得, ∴点E在抛物线上.
(3)法一:存在点P(a,0),延长EF交CD于点G,易求OF=CG=3,PB=a-1.
S梯形BCGF = 5,S梯形ADGF = 3,记S梯形BCQP = S1,S梯形ADQP = S2,
下面分两种情形: ①当S1∶S2 =1∶3时,,
此时点P在点F(3,0)的左侧,则PF = 3-a,由△EPF∽△EQG,得,则QG=9-3a,∴CQ=3-(9-3a) =3a -6,由S1=2,得,解得;
②当S1∶S2=3∶1时,,此时点P在点F(3,0)的右侧,则PF = a-3,由△EPF∽△EQG,得QG = 3a-9,∴CQ = 3 +(3 a-9)= 3 a-6,
由S1= 6,得,解得,综上所述:所求点P的坐标为(,0)或(,0)……… 14分
法二:存在点P(a,0). 记S梯形BCQP = S1,S梯形ADQP = S2,易求S梯形ABCD = 8.
当PQ经过点F(3,0)时,易求S1=5,S2 = 3,此时S1∶S2不符合条件,故a≠3.
设直线PQ的解析式为y = kx+b(k≠0),则,解得,
∴. 由y = 2得x = 3a-6,∴Q(3a-6,2) ……… 10分
∴CQ = 3a-6,BP = a-1,.
下面分两种情形:①当S1∶S2 = 1∶3时,= 2;
∴4a-7 = 2,解得;……………………………………………… 12分
②当S1∶S2 = 3∶1时,; ∴4a-7 = 6,解得;
综上所述:所求点P的坐标为(,0)或(,0)………… 14分
[说明:对于第(3)小题,只要考生能求出或两个答案,就给6分. ]
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
【077】解:(1)把B(0,6)代入,得=6………………………1分
把=0代入,得=8
∴点A的坐标为(8,0)…………… 3分
(2)在矩形OACB中,AC=OB=6,
BC=OA=8,∠C=90°
∴AB=
∵PD⊥AB∴∠PDB=∠C=90°
,∴∴∴
又∵BC∥AE,∴△PBD∽△EAD
∴,即,∴
∵,∴ ()……………………………7分 (注:写成不扣分)
② ⊙Q是△OAB的内切圆 ,可设⊙Q的半径为r
∵,解得r=2.………………………………………8分
设⊙Q与OB、AB、OA分别切于点F、G、H
可知,OF=2∴BF=BG=OB-OF=6-2=4,设直线PD与⊙Q交于点 I、J ,过Q作QM⊥IJ于点M,连结IQ、QG, ∵QI=2,
∴ ∴ 在矩形GQMD中,GD=QM=1.6
∴BD=BG+GD=4+1.6=5.6,由,得
∴点P的坐标为(7,6)…………………………………………………………………11分
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
当PE在圆心Q的另一侧时,同理可求点P的坐标为(3,6)………………………12分
综上,P点的坐标为(7,6)或(3,6).………………………………………………13分。
【053】略
【054】. 解:(1)B(1,)
(2)设抛物线的解析式为y=ax(x+a),代入点B(1, ),得,
因此
(3)如图,抛物线的对称轴是直线x=—1,当点C位于对称轴与线段AB的交点时,△BOC的周长最小.
C
B
A
O
y
x
设直线AB为y=kx+b.所以,
因此直线AB为,
当x=-1时,,
因此点C的坐标为(-1,).
D
B
A
O
y
x
P
(4)如图,过P作y轴的平行线交AB于D.
当x=-时,△PAB的面积的最大值为,此时.
【055】解:(1)⊙P与x轴相切.
∵直线y=-2x-8与x轴交于A(4,0),与y轴交于B(0,-8),
∴OA=4,OB=8.由题意,OP=-k,∴PB=PA=8+k.
在Rt△AOP中,k2+42=(8+k)2,
∴k=-3,∴OP等于⊙P的半径,
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
∴⊙P与x轴相切.
(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在
线段OB上时,作PE⊥CD于E.
∵△PCD为正三角形,∴DE=CD=,PD=3,
∴PE=.
∵∠AOB=∠PEB=90°, ∠ABO=∠PBE,
∴△AOB∽△PEB,
∴,
∴∴,
∴,∴.
当圆心P在线段OB延长线上时,同理可得P(0,--8),
∴k=--8,∴当k=-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.
【056】解:(1)圆心在坐标原点,圆的半径为1,
点的坐标分别为
抛物线与直线交于点,且分别与圆相切于点和点,
. 2分
点在抛物线上,将的坐标代入
,得: 解之,得:
抛物线的解析式为:. 4分
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
O
x
y
N
C
D
E
F
B
M
A
P
(2)
抛物线的对称轴为,
. 6分
连结,
,,
又,
,
. 8分
(3)点在抛物线上. 9分
设过点的直线为:,
将点的坐标代入,得:,
直线为:. 10分
过点作圆的切线与轴平行,点的纵坐标为,
将代入,得:.
点的坐标为, 11分
当时,,
所以,点在抛物线上. 12分
说明:解答题各小题中只给出了1种解法,其它解法只要步骤合理、解答正确均应得到相应的分数.
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
【057】解: (1)由题知: ……………………………………1 分
解得: ……………………………………………………………2分
∴ 所求抛物线解析式为: ……………………………3分
(2) 存在符合条件的点P, 其坐标为P (-1, )或P(-1,- )
或P (-1, 6) 或P (-1, )………………………………………………………7分
(3)解法①:
过点E 作EF⊥x 轴于点F , 设E ( a ,--2a+3 )( -3< a < 0 )
∴EF=--2a+3,BF=a+3,OF=-a ………………………………………………8 分
∴S四边形BOCE = BF·EF + (OC +EF)·OF
=( a+3 )·(--2a+3) + (--2a+6)·(-a)……………………………9 分
=………………………………………………………………………10 分
=-+
∴ 当a =-时,S四边形BOCE 最大, 且最大值为 .……………………………11 分
此时,点E 坐标为 (-,)……………………………………………………12分
解法②:
过点E 作EF⊥x 轴于点F, 设E ( x , y ) ( -3< x < 0 ) …………………………8分
则S四边形BOCE = (3 + y )·(-x) + ( 3 + x )·y ………………………………………9分
= ( y-x)= ( ) …………………………………10 分
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
= - +
∴ 当x =-时,S四边形BOCE 最大,且最大值为 . …………………………11分
此时,点E 坐标为 (-,) ……………………………………………………12分
【058】解:(1)法一:由图象可知:抛物线经过原点,
设抛物线解析式为.
把,代入上式得: 1分
解得 3分
∴所求抛物线解析式为 4分
法二:∵,,
∴抛物线的对称轴是直线.
设抛物线解析式为() 1分
把,代入得
解得 3分
∴所求抛物线解析式为. 4分
(2)分三种情况:
①当,重叠部分的面积是,过点作轴于点,
2
O
A
B
C
x
y
1
1
3
P
第26题图1
Q
F
∵,在中,,,
在中,,,
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
∴,
2
O
A
B
C
x
y
1
1
3
第26题图2
Q
F
G
P
H
∴. 6分
②当,设交于点,作轴于点,
,则四边形是等腰梯形,
重叠部分的面积是.
∴,
∴. 8分
2
O
A
B
C
x
y
1
1
3
第26题图3
Q
F
M
P
N
③当,设与交于点,交于点,重叠部分的面积是.
因为和都是等腰直角三角形,
所以重叠部分的面积是.
∵,,
∴,
∴,
∴
. 10分
(3)存在 12分
14分
【059】略
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
【060】(1)解:把A(,0),C(3,)代入抛物线 得
1分
整理得 ……………… 2分 解得………………3分
∴抛物线的解析式为 4分
(2)令 解得
∴ B点坐标为(4,0)
又∵D点坐标为(0,) ∴AB∥CD ∴四边形ABCD是梯形.
∴S梯形ABCD = 5分
设直线与x轴的交点为H,
D
O
B
A
x
y
C
B
C
y=kx+1
图(9) -1
H
T
与CD的交点为T,
则H(,0), T(,) 6分
∵直线将四边形ABCD面积二等分
∴S梯形AHTD =S梯形ABCD=4
∴ 7分
∴ 8分
E
F
M
N
G
O
B
A
x
y
图(9) -2
(3)∵MG⊥轴于点G,线段MG︰AG=1︰2
∴设M(m,), 9分
∵点M在抛物线上 ∴
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机
解得(舍去) 10分
∴M点坐标为(3,) 11分
根据中心对称图形性质知,MQ∥AF,MQ=AF,NQ=EF,
∴N点坐标为(1,) 12分
天添资源网 www.ttzyw.com 教案 试题 公文 电脑 手机