由莲山课件提供http://www.5ykj.com/ 资源全部免费
重庆市开县三校2017届九年级数学上学期期中联考试
(本试题共26小题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试卷上直接作答.
2.作答前认真阅读答题卡上的注意事项.
3、作图(包括辅助线),请一律用黑色签字笔完成。
参考公式:抛物线的顶点坐标为
一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卷中对应的方框涂黑.
1、在0,-2,5,,-0.3中,负数的个数是( )
A、1 B、2 C、3 D、4
2.下列方程一定是一元二次方程的是( )
A. B. C. D.
3、下列计算正确的是( )
A、 B、
C、 D、
4、 抛物线 与轴的交点坐标是( )
A.(1,2) B. C. D.
5、如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于 ( )
A、30° B、40° C、60° D、70°
6、函数的图像如图所示,那么关于x的方程的根的情况是( )
A、 有两个不相等的实数根 B、有两个异号实数根 C、有两个相等的实数根 D、无实数根
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(7题图)
(6题图)
(5题图)
7. 如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为( )
A、1 B、2 C、3 D、4
8、如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,则第8个图形中花盆的个数为( )
A、56 B、64 C、72 D、90
9.2014年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下面能反映y与x的函数关系的大致图象是( )
A
B
C
D
.
10.已知是关于x的方程的一个根,则这个方程的另一个根是( )
A. B.-2 C. D.
11、如下左图为二次函数(a≠0)的图象,则下列说法:
①a>0;②2a+b=0; ③a+b+c>0;④当﹣1<x<3时,y>0。
其中正确的个数为( )
A.1 B.2 C.3 D.4
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
12.对于每个非零自然数n,抛物线与x轴交于An、Bn两点,以表示这两点间的距离,则的值是( )
A. B. C. D.
二、填空题(本大题6个小题,每小题4分,共24分)在每小题中,请将答案填在答题卷相应位置的横线上.
13、实数的相反数是 。
14、方程x2=2x的解是 。
15、函数中,自变量的取值范围是 。
16、在函数中,若,那么函数的最大值是 。
17. 将一副三角板按如图位置摆放,使得两块三角板的
点与重合,点在上.已知AB=AC=,
将△MED绕点A(M)逆时针旋转60°后(图2),两个三
角形重叠(阴影)部分的面积是 _____。
18、如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同
时开始以相同速度沿BC、CD运动,与△BCF相应的△EGH在运动过程中
始终保持△EGH ≌△BCF,B、E、C、G在一直线上,△DHE的面积的最
小值是
三、解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.
19.解一元二次方程 .
第20题图
20.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,连接DE、BF.求证:△ADE≌△CBF.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.
21.计算:(1) (2)
22、我校初2016级举行了初三体育测试,现随机抽取了部分学生的成绩为样本,按 A(优秀)、B(良好)、C(及格)、D(不及格)四个等级进行统计,并将统计结果制成如下统计图.如图,请你结合图表所给信息解答下列问题:
(1)本次调查共随机抽取了_______名学生,其中∠1=
(2)将条形统计图在图中补充完整;
(3)初2016级目前举行了四次体育测试.小新同学第一次成绩为25分,第三次测试成绩为36分,若每次体育期末考试小欣体育成绩的增长率相同,求出这个增长率.
1
23.为满足市场需求,某超市在中秋节来临前夕,购进一种品牌月饼,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(2)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得6000元的利润,那么超市每天销售月饼多少盒?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
24.对x,y定义一种新运算T,规定:(其中、均为非零常数),这里等式右边是通常的四则运算,例如:.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求、的值;
②若关于的方程T有实数解,求实数的值;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则、应满足怎样的关系式?
五、解答题:(本大题2个小题,每小题各12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.
25.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.
(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;
(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;
(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.
图1 图2 图3
26.如图1,抛物线经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线和直线BC的解析式;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)如图2,点P为第一象限抛物线上一点,是否存在使△PBC面积最大的点P?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与直线BC相交于点F,M为直线BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
答案
一、选择题(每小题4分,共48分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
A
D
D
A
C
B
A
A
A
C
D
二、填空题(每小题4分,共24分)
题号
13
14
15
16
17
18
答案
3
x1=0,x2=2
x≠-3
-2
19、解: x1=,x2=--------7分
20、解: 证明:在平行四边形ABCD中,∠A=∠C,AD=BC,
∵E、F分别为AB、CD的中点,
∴AE=CF.
在△AED和△CFB中,
∴△AED≌△CFB(SAS);--------7分
21、解:原式=2 --------5分
解:原式= --------5分
22、解:(1)100名 72° --------2分
(2)补到20 --------4分
(3)令增长率为x,
∴25(1+x)2=36,
∴x1=0.2,x2=-2.2(舍)
答:增长率为20% -----10分
23、解(1)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,……4分
∵x≥45,a=﹣20<0,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴当x=60时,P最大值=8000元
即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;…6分
(2)由题意,得﹣20(x﹣60)2+8000=6000,
解得x1=50,x2=70.
∵每盒售价不得高于58元
∴x2=70(舍去)
∴﹣20×50+1600=600
答:如果超市想要每天获得6000元的利润,那么超市每天销售月饼600盒 ……10分
24、.解:(1)①由题意得: 解得 …………………2分
②由题意得: …………………………3分
化简得:
解得: …………………………6分
(2)由题意得: …………………………8分
化简得: …………………………9分
…………………………10分
25、证明:
(1) …………………………2分
(2)如图1:过点E做SE平行于AD交AB于S点,
图1
图2
,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,
,
…………………………7分
(3)如图2:过点E做EH平行于AD交AB延长线于H点,
,
,,
…………………………12分
26.解:(1)依题意,有: 解得
∴抛物线的解析式:y=﹣x2+3x+4.
∴由B(4,0)、C(0,4)可知,直线BC:y=﹣x+4 …………………………3分
(2)由B(4,0)、C(0,4)可知,直线BC:y=﹣x+4;
过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);
∴PQ=(﹣x2+3x+4)﹣(﹣x+4)=﹣x2+4x;
S△PCB=PQ•OB=×(﹣x2+4x)×4=﹣2(x﹣2)2+8;
所以,当P(2,6)时,△PCB的面积最大. …………………………7分
(3)存在.
抛物线y=﹣x2+3x+4的顶点坐标E
直线BC:y=﹣x+4;当时,
过点M作MN∥EF,交直线BC于M,设N(x,﹣x2+3x+4),则M(x,﹣x+4);
∴MN=|(﹣x2+3x+4)﹣(﹣x+4)|=|﹣x2+4x|;
当EF与NM平行且相等时,四边形EFMN是平行四边形
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
|﹣x2+4x|=
由 解得(不合题意,舍去)
…………………………10分
由 解得
N2();
综上所述,存在平行四边形,
;N2();.………12分
由莲山课件提供http://www.5ykj.com/ 资源全部免费