2012年湖北省荆门市中考数学试卷解析
一、选择题(本大题12个小题,每小题只有唯一正确答案,每小题3分,共36分)
1. 下列实数中,无理数是( )
A.﹣ B.π C. D.|﹣2|
解析::A、﹣是有理数,故本选项错误;
B、是无理数,故本选项正确;
C、=3,是有理数,故本选项错误;
D、|﹣2|=2,是有理数,故本选项错误;
故选B.
2. 用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是( )
A.(x﹣1)2=4 B.(x+1)2=4 C.(x﹣1)2=16 D.(x+1)2=16
解析:把方程x2﹣2x﹣3=0的常数项移到等号的右边,得到x2﹣2x=3,
方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=3+1,
配方得(x﹣1)2=4.
故选A.
3. 已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )
A.30° B.35° C.40° D.45°
解析:∵∠3是△ADG的外角,
∴∠3=∠A+∠1=30°+25°=55°,
∵l1∥l2,
∴∠3=∠4=55°,
∵∠4+∠EFC=90°,
∴∠EFC=90°﹣55°=35°,
∴∠2=35°.
故选B.
4. 若与|x﹣y﹣3|互为相反数,则x+y的值为( )
A.3 B.9 C.12 D.27
解析:∵与|x﹣y﹣3|互为相反数,
∴+|x﹣y﹣3|=0,
∴,
②﹣①得,y=12,
把y=12代入②得,x﹣12﹣3=0,
解得x=15,
∴x+y=12+15=27.
故选D.
5.对于一组统计数据:2,3,6,9,3,7,下列说法错误的是( )
A.
众数是3
B.
中位数是6
C.
平均数是5
D.
极差是7
解析:A.∵3出现了2次,最多,∴众数为3,故此选项正确;
B.∵排序后为:2,3,3,6,7,9,
∴中位数为:(3+6)÷2=4.5;故此选项错误;
C.==5;故此选项正确;
D.极差是9﹣2=7,故此选项正确;
故选B.
6. 已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是( )
A.
B.
C.
D.
解析:由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),
又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,
∴,
解得:,
在数轴上表示为:.
故选A.
7. 下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )
A.
B.
C.
D.
解析:根据勾股定理,AB==2,
BC==,
AC==,
所以△ABC的三边之比为:2:=1:2:,
A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;
B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;
C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;
D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.
故选B.
8. 如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为( )
A.
2
B.
3
C.
4
D.
5
解析:设A的纵坐标是b,则B的纵坐标也是b.
把y=b代入y=得,b=,则x=,,即A的横坐标是,;
同理可得:B的横坐标是:﹣.
则AB=﹣(﹣)=.
则S□ABCD=×b=5.
故选D.
9. 如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( )
A.
2
B.
2
C.
D.
3解析:∵△ABC是等边三角形P是∠ABC的平分线,
∴∠EBP=∠QBF=30°,
∵BF=2,FQ⊥BP,
∴BQ=BF•cos30°=2×=,
∵FQ是BP的垂直平分线,
∴BP=2BQ=2,
在Rt△BEF中,
∵∠EBP=30°,
∴PE=BP=.
故选C.
10.如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为( )
A.
8
B.
4
C.
8
D.
6
解析:∵正方形ABCD的对角线长为2,
即BD=2,∠A=90°,AB=AD,∠ABD=45°,
∴AB=BD•cos∠ABD=BD•cos45°=2×=2,
∴AB=BC=CD=AD=2,
由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,
∴图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8.
故选C.
11. 已知:多项式x2﹣kx+1是一个完全平方式,则反比例函数y=的解析式为( )
A.
y=
B.
y=﹣
C.
y=或y=﹣
D.
y=或y=﹣解析:∵多项式x2﹣kx+1是一个完全平方式,
∴k=±2,
把k=±2分别代入反比例函数y=的解析式得:y=或y=﹣,
故选:C.
12. 已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有( )
A.
8048个
B.
4024个
C.
2012个
D.
1066个
解析:第1个图形,有4个直角三角形,
第2个图形,有4个直角三角形,
第3个图形,有8个直角三角形,
第4个图形,有8个直角三角形,
…,
依次类推,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n个,
所以,第2012个图形中直角三角形的个数是2×2012=4024.
故选B.
二、填空题(本大题共5个小题,每小题3分,共15分)
13. 计算﹣(﹣2)﹣2﹣(﹣2)0= .
解析:原式=﹣﹣1=﹣1.
故答案为:﹣1.
14. 如图,在直角坐标系中,四边形OABC是直角梯形,BC∥OA,⊙P分别与OA、OC、BC相切于点E、D、B,与AB交于点F.已知A(2,0),B(1,2),则tan∠FDE= .
解析:连接PB、PE.
∵⊙P分别与OA、BC相切于点E、B,
∴PB⊥BC,PE⊥OA,
∵BC∥OA,
∴B、P、E在一条直线上,
∵A(2,0),B(1,2),
∴AE=1,BE=2,
∴tan∠ABE==,
∵∠EDF=∠ABE,
∴tan∠FDE=.
故答案为:.
15如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 cm2.(结果可保留根号)
解析:根据该几何体的三视图知道其是一个六棱柱,
∵其高为12cm,底面半径为5,
∴其侧面积为6×5×12=360cm2
密封纸盒的侧面积为:×5×6×5=75cm2
∴其全面积为:(75+360)cm2.
故答案为:(75+360).
16.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为 .
解析:根据题意可得:y=x+m﹣2,
∵“关联数”[1,m﹣2]的一次函数是正比例函数,
∴m﹣2=0,
解得:m=2,
则关于x的方程变为+=1,
解得:x=3,
检验:把x=3代入最简公分母2(x﹣1)=4≠0,
故x=3是原分式方程的解,
故答案为:x=3.
17. 如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,y=t2;④当t=秒时,△ABE∽△QBP;其中正确的结论是 ①③④ (填序号).
解:根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/秒,
∴BC=BE=5,
∴AD=BE=5,故①小题正确;
又∵从M到N的变化是2,
∴ED=2,
∴AE=AD﹣ED=5﹣2=3,
在Rt△ABE中,AB===4,
∴cos∠ABE==,故②小题错误;
过点P作PF⊥BC于点F,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB==,
∴PF=PBsin∠PBF=t,
∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;
当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,
PQ=CD﹣PD=4﹣=,
∵=,==,
∴=,
又∵∠A=∠Q=90°,
∴△ABE∽△QBP,故④小题正确.
综上所述,正确的有①③④.
故答案为:①③④.
18.先化简,后求值:,其中a=+1.
解:
原式=
=
=.…(5分)
当a=+1时,原式==.…(8分)
19.如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、H.
(1)请根据题意用实线补全图形;
(2)求证:△AFB≌△AGE.
解:(1)画图,如图;…(4分)
(2)证明:由题意得:△ABC≌△AED.…(5分)
∴AB=AE,∠ABC=∠E.…(6分)
在△AFB和△AGE中,
∴△AFB≌△AGE(ASA).…(9分)
20. “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
解:(1)60÷10%=600(人).
答:本次参加抽样调查的居民有600人.(2分)
(2)如图;…(5分)
(3)8000×40%=3200(人).
答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)
(4)如图;
(列表方法略,参照给分).…(8分)
P(C粽)==.
答:他第二个吃到的恰好是C粽的概率是.…(10分)
21. 如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)
解:如图,连接AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F.则OF⊥AB.
∵OA=OB=5m,AB=8m,
∴AF=BF=AB=4(m),∠AOB=2∠AOF,
在Rt△AOF中,sin∠AOF==0.8=sin53°,
∴∠AOF=53°,则∠AOB=106°,
∵OF==3(m),由题意得:MN=1m,
∴FN=OM﹣OF+MN=3(m),
∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,
∴AE=FN=3m,DC=AB+2DE.
在Rt△ADE中,tan56°==,
∴DE=2m,DC=12m.
∴S阴=S梯形ABCD﹣(S扇OAB﹣S△OAB)=(8+12)×3﹣(π×52﹣×8×3)=20(m2).
答:U型槽的横截面积约为20m2.
22. 荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.
(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;
(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?
解:(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=;
(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.
由题意得:
解得x≥50.
由题意得w=8(75﹣x)+24x=16x+600.
∵16>0,∴w的值随x的增大而增大.
∴当x=50时,75﹣x=25,W最小=1400(元).
答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.
23. 已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.
(1)求k的取值范围;
(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.
①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最大值.
解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.…(1分)
当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,
令y=0得(k﹣1)x2﹣2kx+k+2=0.
△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k=1.…(2分)
综上所述,k的取值范围是k≤2.…(3分)
(2)①∵x1≠x2,由(1)知k<2且k=1.
由题意得(k﹣1)x12+(k+2)=2kx1.(*)…(4分)
将(*)代入(k﹣1)x12+2kx2+k+2=4x1x2中得:
2k(x1+x2)=4x1x2.…(5分)
又∵x1+x2=,x1x2=,
∴2k•=4•.…(6分)
解得:k1=﹣1,k2=2(不合题意,舍去).
∴所求k值为﹣1.…(7分)
②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.
且﹣1≤x≤1.…(8分)
由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.…(9分)
∴y的最大值为,最小值为﹣3.…(10分)
24. 如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).
(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.
解:由题意,设抛物线解析式为y=a(x﹣3)(x+1).
将E(0,3)代入上式,解得:a=﹣1.
∴y=﹣x2+2x+3.
则点B(1,4).
(2)证明:如图1,过点B作BM⊥y于点M,则M(0,4).
在Rt△AOE中,OA=OE=3,
∴∠1=∠2=45°,AE==3.
在Rt△EMB中,EM=OM﹣OE=1=BM,
∴∠MEB=∠MBE=45°,BE==.
∴∠BEA=180°﹣∠1﹣∠MEB=90°.
∴AB是△ABE外接圆的直径.
在Rt△ABE中,tan∠BAE===tan∠CBE,
∴∠BAE=∠CBE.
在Rt△ABE中,∠BAE+∠3=90°,∴∠CBE+∠3=90°.
∴∠CBA=90°,即CB⊥AB.
∴CB是△ABE外接圆的切线.
(3)解:Rt△ABE中,∠AEB=90°,tan∠BAE=,sin∠BAE=,cos∠BAE=;
若以D、E、P为顶点的三角形与△ABE相似,则△DEP必为直角三角形;
①DE为斜边时,P1在x轴上,此时P1与O重合;
由D(﹣1,0)、E(0,3),得OD=1、OE=3,即tan∠DEO==tan∠BAE,即∠DEO=∠BAE
满足△DEO∽△BAE的条件,因此 O点是符合条件的P1点,坐标为(0,0).
②DE为短直角边时,P2在x轴上;
若以D、E、P为顶点的三角形与△ABE相似,则∠DEP2=∠AEB=90°,sin∠DP2E=sin∠BAE=;
而DE==,则DP2=DE÷sin∠DP2E=÷=10,OP2=DP2﹣OD=9
即:P2(9,0);
③DE为长直角边时,点P3在y轴上;
若以D、E、P为顶点的三角形与△ABE相似,则∠EDP3=∠AEB=90°,cos∠DEP3=cos∠BAE=;
则EP3=DE÷cos∠DEP3=÷=,OP3=EP3﹣OE=;
综上,得:P1(0,0),P2(9,0),P3(0,﹣).
(4)解:设直线AB的解析式为y=kx+b.
将A(3,0),B(1,4)代入,得解得
∴y=﹣2x+6.
过点E作射线EF∥x轴交AB于点F,当y=3时,得x=,∴F(,3).
情况一:如图2,当0<t≤时,设△AOE平移到△DNM的位置,MD交AB于点H,MN交AE于点G.
则ON=AD=t,过点H作LK⊥x轴于点K,交EF于点L.
由△AHD∽△FHM,得,即.
解得HK=2t.
∴S阴=S△MND﹣S△GNA﹣S△HAD=×3×3﹣(3﹣t)2﹣t•2t=﹣t2+3t.
情况二:如图3,当<t≤3时,设△AOE平移到△PQR的位置,PQ交AB于点I,交AE于点V.
由△IQA∽△IPF,得.即,
解得IQ=2(3﹣t).
∴S阴=S△IQA﹣S△VQA=×(3﹣t)×2(3﹣t)﹣(3﹣t)2=(3﹣t)2=t2﹣3t+.
综上所述:s=.