由莲山课件提供http://www.5ykj.com/ 资源全部免费
江苏省盐城市盐都区2017-2018学年八年级数学上学期期中联考试题
注意事项:
1.本次考试时间为100分钟,卷面总分为120分.考试形式为闭卷.
2.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分.
3.答题前,务必将姓名、考试编号用0.5毫米黑色签字笔填写在试卷及答题卡上.
一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.)
1. 下列手机软件图标中,是轴对称图形的是 【 ▲ 】
2. 如图,∠BAD=∠BCD=90°,AB=CB,据此可以证明△BAD≌△BCD,证明的依据是 【 ▲ 】
(第2题图)
(第5题图)
(第6题图)
A.AAS B.ASA C.SAS D.HL
3. 下列线段长中,能构成直角三角形的一组是 【 ▲ 】
A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6
4. 在实数0,,,,1. 010 010 001中,无理数有 【 ▲ 】
A.1个 B.2个 C.3个 D.4个
5. 如图,在数轴上表示实数的点可能是 【 ▲ 】
A.点P B.点Q C.点M D.点N
6. 如图是5×5的正方形网格,以点D、E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出 【 ▲ 】
A.2个 B.4个 C.6个 D.8个
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在答题卡相应位置上)
7. 4的平方根是 ▲ .
8. 在△ABC中,AB=AC,∠A=100°,则∠B= ▲ °.
9. 如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为 ▲ °.
(第11题图)
(第13题图)
(14第题图)
(第16题图)
(第9题图)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
10.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 ▲ .
11.如图,△ABC中,∠BAC的平分线交BC于点D,过点D作DE⊥AC于E,DE=5,则点D到AB的距离是 ▲ .
12.我国“辽宁号”航空母舰的满载排水量为67 500吨,将数据67 500精确到千位的近似值为 ▲ .(结果用科学计数法表示)
13.如图是一株美丽的“勾股树”,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为9、4、4、1,则最大的正方形E的面积是 ▲ .
14.如图,在△ABC中,AB、AC的垂直平分线分别交BC于E、F两点,若∠BAC=120°,则∠EAF的度数为 ▲ °.
15.若正数的两个平方根分别为和,则正数= ▲ .
16.如图,在△ABC中,ABAC=10,BC=12,AD是角平分线,P、Q分别是AD、AB边上的动点,则BP+PQ的最小值为 ▲ .
三、解答题(本大题共10小题,共82分.请在答题卡指定区域内作答,解答时应写出文字说明,推理过程或演算步骤)
17.(本题满分5分)
(第17题图)
如图,点B、F、C、E在同一条直线上,且FB=CE,AC=DF,∠ACB=∠DFE.
求证:△ACB≌△DFE.
18.(本题满分5分)尺规作图.
如图,已知∠AOB与点M、N.
求作:点P,使点P到OA、OB的距离相等,且到点M与点N的距离也相等.
(第18题图)
(不写作法与证明,保留作图痕迹)
19.(本题满分8分,每小题4分)
(1)计算:;
(2)求x的值:=9.
20.(本题满分6分)
方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图①,△ABC是格点三角形.
(1)试在图②中确定格点D,画一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(画出一个即可)
(2)试在图③中画一个“格点正方形”,使其面积等于10.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(第20题图)
图①
图②
图③
(第21题图)
21.(本题满分6分)
如图,在四边形ABCD中,AB=AD,∠ABC=∠ADC.
求证:BC=DC.
22.(本题满分8分)
(第22题图)
如图,在△ABC中,AC=21,BC=13,D是AC边上一点,BD=12,AD=16,E是边AB的中点,求线段DE的长.
23.(本题满分10分)
(第23题图)
如图,在等边△ABC中,E,F分别在边AC、BC上,满足AE=CF,连接BE,AF交于点P.
(1)求证:△ABE≌△CAF;
(2)求∠APB的度数.
24.(本题满分10分)
一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.
(第24题图)
(1)求此时梯顶A距地面的高度AC;
(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?
25.(本题满分10分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(备用图)
(第25题图)
如图,△ABC中,∠C=90°,AB=10 cm,BC=6 cm,动点P从点C出发,以每秒2 cm的速度按C→A的路径运动,设运动时间为t秒.
(1)出发2秒时,△ABP的面积为 ▲ cm2;
(2)当t为何值时,BP恰好平分∠ABC?
26.(本题满分14分)
【问题情境】
课外兴趣小组活动时,老师提出了如下问题:
如图①,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
(第26题图)
图①
图③
图②
小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB,依据是 ▲ .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三边关系”可求得AD的取值范围是 ▲ .
解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
【初步运用】
如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求线段BF的长.
【灵活运用】
如图③,在△ABC中, ∠A=90°,D为BC中点, DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017/2018学年度第一学期期中质量检测
八年级数学参考答案及评分标准
(阅卷前请认真校对,以防答案有误!)
一、选择题(每小题3分,共18分)
题号
1
2
3
4
5
6
答案
A
D
C
B
C
B
二、填空题(每小题2分,共20分)
7. ±2. 8. 40. 9. 100. 10.15.
11.5. 12.6.8×104. 13.18. 14.60.
15.25. 16.9.6.
三、解答题
17.(本题满分5分)
证明:∵FB=CE,
∴BC=EF. 1分
在△ACB和△DFE中,
4分
∴△ACB≌△DFE. 5分
(说明:全等条件中每写对一个给1分)
18.(1)作∠AOB的平分线; 2分
(2)连接MN,作线段MN的垂直平分线,标出∠AOB的平分线与线段MN的垂直平分线的交点P. 4分
如图,点P就是所要求作的点. 5分
(说明:不交待“点P就是所要求作的点”不扣分)
19.(本题满分8分,每小题4分)
解:(1)原式= 3分
=. 4分
(说明:每化简正确一个给1分)
解:(2)=3或=-3. 2分
∴=1或=-5. 4分
(写出一个一元一次方程给1分,一个正确答案给1分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20.(本题满分6分)
(1)如图①所示. 3分
(2)如图②所示. 6分
(第20题答图)
图①
图②
21.(本题满分6分)
证明:连接BD.
∵AB=AD,
∴∠ABD=∠ADB. 2分
∵∠ABC=∠ADC,
∴∠CBD=∠CDB. 4分
∴BC=DC. ………………………………………………………………………………6分
22.(本题满分8分)
解:CD=21-16=5.
∵DC2+BD2=52+122=169,BC=132=169,
∴DC2+BD2=BC2. 2分
∴△BCD是直角三角形,且∠BDC=90°. 3分
∴∠ADB=90° 4分
在Rt△ADB中,由勾股定理,得AB==20 6分
∵∠ADB=90°,E为斜边AB的中点,
∴DE=AB=×20=10. 8分
23.(本题满分10分)
(1)证明:∵△ABC是等边三角形,
∴AB=AC,∠BAE=∠C=60°, 2分
在△ABE和△CAF中,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
5分
∴△ABE≌△CAF(SAS). 6分
(2)∵△ABE≌△CAF,
∴∠ABE=∠CAF. 7分
在△ABP中,∵∠APB+∠ABP+∠BAP=180°, 8分
∴∠APB=180°-∠PBA-∠PAB=180°-∠CAF-∠PAB=180°-(∠CAF+∠PAB)=180°-∠BAC=120°. 10分
24.(本题满分10分)
解:(1)在Rt△ABC中,由勾股定理,得AC2+BC2=AB2. 2分
∴AC2+0.72=2.52.
解得AC=2.4(m). 3分
答:此时梯顶距地面的高度AC为2.4m. 4分
(2)由题意得:A′C=2.4-0.9=1.5,A′B′=2.5. 5分
在Rt△A′B′C中,由勾股定理得A′C2+B′C2=A′B′2. 7分
∴1.52+B′C2=2.52.
解得B′C =2(m) 8分
∴BB′= B′C-BC=2-0.7=1.3(m). 9分
答:梯足在水平方向向右滑动了1.3m. 10分
25.(本题满分10分)
(1)12. 3分
(2)解:过点P作PG⊥AB于G,则∠BGP=90°.
∵∠C=90°,
∴∠BGP=∠C. 4分
∵BP平分∠ABC,
∴∠CBP=∠ABP. 5分
又∵BP=BP,
∴△BCP≌△BGP. 6分
∴BG=BC=6,PG=PC=2t.
∴PA=8-2t,AG=10-6=4. 8分
在Rt△APG中, AG2+PG2=AP2.
∴42+(2t)2=(8-2t)2 9分
解得t=. 10分
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(说明:用面积法求解类似给分)
26.(本题满分14分)
解:【问题提出】
(1)B. 3分
(2)2<AD<10. 6分
【初步运用】
如图①,延长AD到M,使DM=AD,连接BM.
∵AD是△ABC中线,
∴BD=DC.
又∵∠ADC=∠MDB,
∴△ADC≌△MDB.
∴BM=AC,∠CAD=∠M. 8分
∵AE=EF,
∴∠CAD=∠AFE.
∵∠AFE=∠BFD,
∴∠BFD=∠CAD=∠M.
∴BF=BM=AC=3+2=5. 10分
(第26题答图)
图①
图②
【灵活运用】
猜想:BE2+CF2=EF2 11分
理由:如图②,延长FD至G,使得DG=DF,连接BG、EG,则△FDC≌△GDB.
∴CF=BG,∠FCD=∠GBD.
∵DF=DG,DE⊥DF,
∴EF=EG. 12分
在△ABC中,∵∠A=90°,
∴∠EBC+∠FCB=90°.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠EBC+∠GBD=90°,即∠EBG=90°. 13分
∴在Rt△EBG中,BE2+BG2=EG2.
∴BE2+CF2=EF2. 14分
由莲山课件提供http://www.5ykj.com/ 资源全部免费