由莲山课件提供http://www.5ykj.com/ 资源全部免费
第1章 三角形的初步知识
1.1 认识三角形(一)
(第1题)
1.如图,图中共有__6__个三角形,以AD为边的三角形有△ABD,△ADE,△ADC,以E为顶点的三角形有△ABE,△ADE,△AEC,∠ADB是△ABD的内角,△ADE的三个内角分别是∠ADE,∠AED,∠DAE.
2.三角形的两边长分别是2和3,若第三边的长是奇数,则第三边的长为__3__;若第三边的长是偶数,则三角形的周长为7或9.
3.在现实生活中,有些人为抄近路而践踏了草坪,这是一种不文明的现象,我们应予以制止或劝解.请你用数学知识解释这一现象的原因:两点之间线段最短.
4.(1)已知在△ABC中,AB=6,BC=4,则边AC的长可能是(B)
A. 11 B. 5
C. 2 D. 1
(2)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为(B)
A. 9 B. 12
C. 7或9 D. 9或12
5.在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取(B)
A. 30° B. 59°
C. 60° D. 89°
6.若一个三角形三个内角的度数之比是2∶3∶7,则这个三角形一定是(C)
A. 直角三角形 B. 锐角三角形
C. 钝角三角形 D. 不能确定
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(第7题)
7.如图,在△BCD中,BC=4,BD=5.
(1)求CD的取值范围.
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.
【解】 (1)∵在△BCD中,BC=4,BD=5,∴1AC.
∴AE′+BE′+CE′+DE′>AC+BD,即AE+BE+CE+DE最短.
12.观察并探求下列各问题:
(1)如图①,在△ABC中,P为边BC上一点,则BP+PC__<__AB+AC(填“>”“<”或“=”).
(2)将(1)中的点P移到△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.
(3)将(2)中的点P变为两个点P1,P2,得图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.
(第12题)
【解】 (1)BP+PC<AB+AC.理由:三角形两边的和大于第三边.
(2)△BPC的周长<△ABC的周长.理由如下:
如解图①,延长BP交AC于点M.
在△ABM中,BP+PM<AB+AM,
在△PMC中,PC<PM+MC,
两式相加,得BP+PC<AB+AC,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴BP+PC+BC<AB+AC+BC,
即△BPC的周长<△ABC的周长.
(第12题解)
(3)四边形BP1P2C的周长<△ABC的周长.理由如下:
如解图②,分别延长BP1,CP2交于点M.
由(2)知,BM+CM<AB+AC.
又∵P1P2<P1M+P2M,
∴BP1+P1P2+P2C<BM+CM<AB+AC,
∴BP1+P1P2+P2C+BC