2018届中考数学专题突破训练(28)概率(含解析)
加入VIP免费下载

本文件来自资料包: 《2018届中考数学专题突破训练(28)概率(含解析)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ 第28讲 概 率 ‎(时间40分钟 满分100分)‎ A卷 一、选择题(每小题3分,共21分)‎ ‎1.(2017·新疆生产建设兵团)下列事件中,是必然事件的是( B )‎ A.购买一张彩票,中奖 B.通常温度降到0℃以下,纯净的水结冰 C.明天一定是晴天 D.经过有交通信号灯的路口,遇到红灯 ‎2.(2017·岳阳)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( C )‎ A. B. C. D. ‎3.(2017·广州)某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( A )‎ A. B. C. D. ‎4.(2017·河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( C )‎ A. B. C. D. ‎(导学号 58824212)‎ ‎5.(2017·南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( C )‎ A. B. C. D. ‎6.(2017·兰州)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( D )‎ A.20 B.24 C.28 D.30‎ ‎7.(2017·金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( D )‎ A. B. C. D. 二、填空题(每小题3分,共18分)‎ ‎8.(2017·随州)“抛掷一枚质地均匀的硬币,正面向上”是_随机_事件(从“必然”、“随机”、“不可能”中选一个).‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎9.(2017·徐州)如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为__.‎ ‎,第9题图)   ,第11题图)‎ ‎10.(2017·哈尔滨)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其他差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为__.‎ ‎11.(2017·盘锦模拟)如图所示,平行四边形的两条对角线及过对角线交点的任意一条直线将平行四边形纸片分割成六个部分,现在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为__.(导学号 58824213)‎ ‎12.(2017·贵阳)袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有_3_个.‎ ‎13.(2017·重庆B)点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是__.‎ 三、解答题(本大题3小题,共30分)‎ ‎14.(10分)(2017·衡阳)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.‎ ‎(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?‎ ‎(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.‎ 解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为;‎ ‎(2)画树状图为:‎ 共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,‎ 所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率为.‎ ‎15.(10分)(2017·凉州区)在一次数学兴趣小组活动中,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).‎ ‎(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;‎ ‎(2)分别求出李燕和刘凯获胜的概率.‎ 解:(1)根据题意列表如下:‎ ‎ 甲 乙 ‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎3‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ ‎4‎ ‎10‎ ‎11‎ ‎12‎ ‎13‎ ‎5‎ ‎11‎ ‎12‎ ‎13‎ ‎14‎ 可见,两数和共有12种等可能结果;‎ ‎(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,‎ ‎∴李燕获胜的概率为=;刘凯获胜的概率为=.‎ ‎16.(10分)(2017·黔西南州)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A,B,C,D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图①、图②两幅统计图(尚不完整),请根据统计图解答下列问题:‎ ‎(1)参加抽样调查的居民有多少人?‎ ‎(2)将两幅不完整的统计图补充完整;‎ ‎(3)若居民区有8000人,请估计爱吃D粽的人数;‎ ‎(4)若有外型完全相同的A,B,C,D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.‎ ‎(导学号 58824214)‎ 解:(1)根据题意得:60÷10%=600(人);‎ ‎(2)补全统计图如解图①,②所示;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)根据题意得:40%×8000=3200(人);‎ ‎(4)画树状如解图③,‎ 图③‎ 得到所有等可能的情况有12种,其中第二个吃到的恰好是C粽的情况有3种,‎ 则P(C粽)==,‎ 答:他第二个吃到的恰好是C粽的概率是.‎ B卷 ‎1.(3分)(2017·海南改编)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( D )‎ A. B. C. D. ‎,第1题图)   ,第2题图)‎ ‎2.(3分)(2017·赤峰)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为( B )‎ A. B. C. D. ‎(导学号 58824215)‎ ‎3.(3分)(2017·台州)三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为__.‎ ‎4.(11分)(2017·怀化)“端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动,为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.‎ ‎(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;‎ ‎(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 解:(1)用列表法得出所有可能的结果如下:‎ 甲 乙 石头 剪刀 布 石头 ‎(石头,石头)‎ ‎(石头,剪刀)‎ ‎(石头,布)‎ 剪刀 ‎(剪刀,石头)‎ ‎(剪刀,剪刀)‎ ‎(剪刀,布)‎ 布 ‎(布,石头)‎ ‎(布,剪刀)‎ ‎(布,布)‎ ‎(2)裁判员的这种做法对甲、乙双方是公平的.‎ 理由:根据表格得,P(甲获胜)=,P(乙获胜)=.‎ ‎∵P(甲获胜)=P(乙获胜),‎ ‎∴裁判员这种做法对甲、乙双方是公平的.‎ ‎5.(11分)(2017·烟台)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:‎ A.放下自我,彼此尊重;‎ B.放下利益,彼此平衡;‎ C.放下性格,彼此成就;‎ D.合理竞争,合作双赢.‎ 要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:‎ 观点 频数 频率 A a ‎0.2‎ B ‎12‎ ‎0.24‎ C ‎8‎ b D ‎20‎ ‎0.4‎ ‎(1)参加本次讨论的学生共有_50_人;‎ ‎(2)表中a=_10_,b=_0.16_;‎ ‎(3)将条形统计图补充完整;‎ ‎(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.‎ 解:(3)补充条形统计图如解图①;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 图①‎ ‎(4)根据题意画出树状图如解图②,‎ 图②‎ 由树状图可知:共有12种等可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,‎ 所以选中观点D(合理竞争,合作双赢)的概率==.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料