由莲山课件提供http://www.5ykj.com/ 资源全部免费
1. (2014年,内蒙古赤峰市,3分)如图,一根长为5米的竹竿AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹竿顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是【 】
考点:1.动线问题的函数问题;2.勾股定理;3. 排他法的应用.
2.(2015年,内蒙古巴彦淖尔,3分)如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是( )
A.AE=12cm B.sin∠EBC=
C.当0<t≤8时, D.当t=9s时,△PBQ是等腰三角形
【答案】D.
【解析】
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
3.(2015年,内蒙古包头市、乌兰察布市,3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为( )
A. B. C. D.
4.(2015年,内蒙古包头市、乌兰察布市,3分)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为( )
A. B. C. D.
5.(2016年,内蒙古通辽市)如图,在矩形ABCD中,已知AB=8,BC=6,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续旋转90°至图②位置,依此类推,这样连续旋转99次后顶点A在整个旋转过程中所经过的路程之和是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.288π B.294π C.300π D.396π
【答案】C.
【解析】
考点:轨迹;矩形的性质;旋转的性质;规律型.
6. (2017年内蒙古通辽市第10题)如图,点在直线上方,且,于,若线段,,,则与的函数关系图象大致是( )
A. B. C. D.
【答案】D
【解析】
试题分析:∵PC⊥AB于C,∠APB=90°,
∴∠ACP=∠BCP=90°,
∴∠APC+∠BPC=∠APC+∠PAC=90°,
∴∠PAC=∠BPC,
∴△APC∽△PBC,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴ ,
∵AB=6,AC=x,
∴BC=6﹣x,
∴PC2=x(6﹣x),
∴PC=,
∴y=AB•PC=3=3,
故选:D.
考点:动点问题的函数图象
1. (2014年,内蒙古赤峰市,3分)直线过点,该直线的解析式可以写为 ▲ .(只写出一个即可)
2. (2014年,内蒙古赤峰市,3分)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 ▲ .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
3.(2015年,内蒙古呼伦贝尔市、兴安盟,3分)将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是 .
【答案】4n+1.
考点:1.规律型:图形的变化类;2.综合题.
4. (2015年,内蒙古赤峰市,3分)“梅花朵朵迎春来”,下面四个图形是由小梅花摆成的一组有规律的图案,按图中规律,第n个图形中小梅花的个数 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
5. (2014年,内蒙古赤峰市,3分)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 ▲ .
6.(2015年,内蒙古通辽市,3分)一列数,,,…,其中=,(n为不小于2的整数),则= .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
7. (2017年内蒙古呼和浩特市第16题)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率进行估计.用计算机随机产生个有序对(,是实数,且,),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部,如果统计出这些点中到原点的距离小于或等于1的点有个,则据此可估计的值为 .(用含,的式子表示)
【答案】
【解析】
试题分析:根据题意,点的分布如图所示:
则有 ,∴π= .
考点:1.利用频率估计概率;2.规律型:点的坐标.
1. (2014年,内蒙古赤峰市,12分)如图1,E是直线AB、CD内部一点,AB∥CD,连接EA、ED
(1)探究猜想:
①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
③猜想图1中∠AED、∠EAB、∠EDC的关系并证明你的结论.
(2)拓展应用:
如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③④位于直线AB上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF的关系(不要求证明).
【答案】(1)①70°,②80°,③∠AED=∠EAB+∠EDC,证明见解析;(2)猜想见解析.
【解析】
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
试题解析:(1)①∠AED=70°.
②∠AED=80°.
③∠AED=∠EAB+∠EDC,证明如下:
(2)当P点在区域①时:,
当P点在区域②时:,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
当P点在区域③时:,
当P点在区域④时:.
考点:1.平行线的性质;2.三角形外角性质
2.(2015年,内蒙古包头市、乌兰察布市,12分)如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).
(1)求线段CD的长;
(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?
(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.
①t为何值时,l经过点C?
②求当l经过点D时t的值,并求出此时刻线段PQ的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
分两种情况讨论:①当S△PQC:S四边形ABCD=1:3时,,即,解得:,(舍去);
②S△PQC:S四边形ABCD=2:3时,,即,∵△<0,∴方程无解,
∴当t为秒时,线段PQ将四边形ABCD的面积分为1:2两部分;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵直线l是△DPQ的对称轴,∴△DEF≌△DQF,∠DQF=90°,EF=QF,设EF=x厘米,则QF=x厘米,FC=(4﹣x)厘米,在Rt△FQC中,,,∴x=,∴EF=厘米,在
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
3. (2015年,内蒙古赤峰市)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.
(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;
(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;
(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴DF=DE;
(2)DF=DE.理由如下:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
考点:几何变换综合题.
4.(2016年,内蒙古包头市,10分)如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=,求的值.
【答案】(1);(2)①四边形AEMF为菱形,理由详见解析;②;(3).
(3)如图③,作FH⊥BC于H,先证明△NCE∽△NFH,利用相似比得到FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,再证明△BFH∽△BAC,利用相似比可计算出x=,则可计算出FH和BH,接着利用勾股定理计算出BF,从而得到AF的长,于是可计算出的值.学科网
试题解析:(1)如图①,
∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,
∴EF⊥AB,△AEF≌△DEF,
∴S△AEF≌S△DEF,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵S四边形ECBF=3S△EDF,
∴S△ABC=4S△AEF,
在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,
∴AB==5,
∵∠EAF=∠BAC,
∴Rt△AEF∽Rt△ABC,
∴=()2,即()2=,
∴AE=;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)如图③,作FH⊥BC于H,
∵EC∥FH,
∴△NCE∽△NFH,
∴CN:NH=CE:FH,即1:NH=:FH,
∴FH:NH=4:7,
设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,
∵FH∥AC,
∴△BFH∽△BAC,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,
∴FH=4x=,BH=4﹣7x=,
在Rt△BFH中,BF==2,
∴AF=AB﹣BF=5﹣2=3,
∴=.
考点:三角形综合题.
5.(2016年,内蒙古通辽市)如图,PA为⊙O的切线,A为切点,直线PO交⊙O于点M、N,过点A作PO的垂线AB,垂足为C,变⊙O于点B,延长BO与⊙O交于点D,连接AD、BM.
(1)等式=OC•OP成立吗?若成立,请加以证明;若不成立,请说明理由.
(2)若AD=6,tan∠M=,求sin∠D的值.
【答案】(1)成立;(2).
【解析】
试题分析:(1)连接OA,由切线的性质得出∠OAP=∠ACO=90°,证出△OAC∽△OPA,得出对应边成比例,即可得出结论;
(2)连接BN,由三角函数得出=,设BN=x,BM=2x,由勾股定理得出MN==
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,由三角形面积得出BC=,得出AB=2BC=,在Rt△ABD中,由勾股定理得出方程,解方程求出BD、AB的长,即可得出结果.
试题解析:(1)等式=OC•OP成立;理由如下:
连接OA,如图1所示,∵PA为⊙O的切线,A为切点,过点A作PO的垂线AB,垂足为C,∴∠OAP=∠ACO=90°,∵∠AOC=∠POA,∴△OAC∽△OPA,∴=,即 =OC•OP.∵OD=OA,∴=OC•OP;学科&网
考点:相似三角形的判定与性质;切线的性质;探究型.
6. (2017年内蒙古通辽市第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在的位置时俯角,在的位置时俯角.若,点比点高.
求(1)单摆的长度();
(2)从点摆动到点经过的路径长().
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【答案】(1)单摆的长度约为18.9cm(2)从点A摆动到点B经过的路径长为29.295cm
试题解析:(1)如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,
∵∠EOA=30°、∠FOB=60°,且OC⊥EF,
∴∠AOP=60°、∠BOQ=30°,
设OA=OB=x,
则在Rt△AOP中,OP=OAcos∠AOP=x,
在Rt△BOQ中,OQ=OBcos∠BOQ=x,
由PQ=OQ﹣OP可得x﹣x=7,
解得:x=7+7≈18.9(cm),
答:单摆的长度约为18.9cm;
(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB=7+7,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠AOB=90°,
则从点A摆动到点B经过的路径长为≈29.295,
答:从点A摆动到点B经过的路径长为29.295cm.
考点:1、解直角三角形的应用﹣仰角俯角问题;2、轨迹
由莲山课件提供http://www.5ykj.com/ 资源全部免费