由莲山课件提供http://www.5ykj.com/ 资源全部免费
十、圆、椭圆、抛物线的最值、范围、定值、定点
一、选择题
1.【2017年云南省第二次统一检测】已知,直线与曲线只有一个公共点 ,则的取值范围为( )
A. B. C. D.
【答案】C
【解析】直线化简为: ,圆心到直线的距离为 ,整理为: ,即 ,整理为 ,设 ,所以 ,解得 或 (舍),即 ,解得: ,故选C.
2.【2018届黑龙江省海林市朝鲜中学高三综合卷一】已知两点, (),若曲线上存在点,使得,则正实数的取值范围为( )
A. B. C. D.
【答案】B
3.设,若直线与圆相切,则的取值范围是 ( )
A. B.
C. D.
【答案】D
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
点睛:与圆有关的最值或值域问题的常见类型及解题策略
(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.
(2)与圆上点有关代数式的最值的常见类型及解法.①形如型的最值问题,可转化为过点和点的直线的斜率的最值问题;②形如型的最值问题,可转化为动直线的截距的最值问题;③形如型的最值问题,可转化为动点到定点的距离平方的最值问题.
4.【2017届贵州省贵阳市第一中学、凯里市第一中学高三下适应性月考卷七】已知直线上总存在点,使得过点作的圆: 的两条切线互相垂直,则实数的取值范围是( )
A. 或 B. C. D. 或
【答案】C
【解析】
如图,设切点分别为A,B.连接AC,BC,MC,由及
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
知,四边形MACB为正方形,故若直线l上总存在点M使得过点M的两条切线互相垂直,只需圆心到直线的距离,即∴,故选C.
5.若方程的任意一组解都满足不等式,则的取值范围是( )
A. B. C. D.
【答案】D
6.【2017届河北省衡水中学高三下第二次摸底】椭圆的左焦点为,上顶点为,右顶点为,若的外接圆圆心在直线的左下方,则该椭圆离心率的取值范围为 ( )
A. B. C. D.
【答案】A
【解析】设,且的外接圆的方程为,将分别代入可得
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,由可得,即,所以,即,所以,应选答案A.
7.【2017届山西省实验中学高三下模拟】已知圆的方程为,过直线: ()上的任意一点作圆的切线,若切线长的最小值为,则直线在轴上的截距为( )
A. B. C. D.
【答案】D
【解析】如图,由,得圆心坐标为(3,4),
要使切线长最小,即圆心到直线l: (a>0)的距离最小,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
8.【2017届重庆市巴蜀中学高三三诊】设是双曲线的右顶点, 是右焦点,若抛物线的准线上存在一点,使,则双曲线的离心率的范围是( )
A. B. C. D.
【答案】A
【解析】抛物线的准线方程为,正好是双曲的右准线.由于AF= ,所以AF弦,圆心,半径圆上任取一点P, ,现在转化为圆与准线相交问题.所以,解得.填A.
9.【2017年湖南省考前演练卷三】中心为原点的椭圆焦点在轴上, 为该椭圆右顶点, 为椭圆上一点, ,则该椭圆的离心率的取值范围是 ( )
A. B. C. D.
【答案】B
10.【2018届广西钦州市高三上第一次检测】抛物线的焦点为,点为该抛物线上的动点,点是抛物线的准线与坐标轴的交点,则的最小值是( )
A. B. C. D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【答案】B
【解析】
解得:k2x2+(2k2﹣4)x+k2=0,
所以△=(2k2﹣4)2﹣4k4=0,解得k=±1,
所以∠NPA=45°,
=cos∠NPA=.
故选B.
11.【2017届河北省石家庄市高三二模】已知动点在椭圆上,若点的坐标为,点满足, ,则的最小值是( )
A. B. C. D.
【答案】C
【解析】
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
结合图形知,当 点为椭圆的右顶点时,
取最小值 最小值是
故选:C.
12.【2018届云南省昆明一中高三第一次摸底】设为坐标原点, 是以为焦点的抛物线()上任意一点, 是线段上的点,且,则直线的斜率的最大值为( )
A. B. C. D. 1
【答案】A
【解析】由题意可得,设,则
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,可得.当且仅当时取得等号,选A.
二、填空题
13.【2018届河南省中原名校(即豫南九校)高三上第二次联考】直线与抛物线交于两不同点,.其中,,若,则直线恒过点的坐标是__________.
【答案】
【解析】设直线为则得,,
直线为,恒过
故答案为.
14.【2018届浙江省“七彩阳光”联盟高三上期初联考】已知椭圆的方程为,过椭圆中心的直线交椭圆于两点, 是椭圆右焦点,则的周长的最小值为__________, 的面积的最大值为__________.
【答案】 10 .
15.【2017 届浙江省杭州高级中学高三2月模拟】设圆与抛物线相交于两点, 为抛物线的焦点,若过点且斜率为
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
的直线与抛物线和圆交于四个不同的点,从左至右依次为,则的值__________ ,若直线与抛物线相交于两点,且与圆相切,切点在劣弧上,则的取值范是__________.
【答案】
【解析】如图所示,联立圆与抛物线的方程可得交点坐标为:
∵点F坐标为(0,1),∴kFB=,∴kl>kFB,
所以直线l与圆交于P1、P3两点,与抛物线交于P2、P4两点,
设
把直线l方程:y=x+1代入x2=4y,得x2−4x−4=0,∴x2+x4=4;
把直线l方程:y=x+1代入x2+y2=12,得2x2+2x−11=0,∴x1+x3=−1
∴,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵直线m与该圆相切,∴,即,
又|MF|=y1+1,|NF|=y2+1,
∴,
∵,∴分别过A. B的圆的切线的斜率为.
∴k∈[],∴0⩽k2⩽2,∴,
∵b>0,∴b∈[]
所以|MF|+|NF|的取值范围为.
16.【2018届河南省中原名校高三上第一次联考】如图,两个椭圆, 内部重叠区域的边界记为曲线C,P是曲线C上的任意一点,给出下列四个判断:
①P到F1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四点的距离之和为定值;
②曲线C关于直线y=x、y=-x均对称;③曲线C所围区域面积必小于36.
④曲线C总长度不大于6π.上述判断中正确命题的序号为________________.
【答案】②③
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故答案为:②③.
三、解答题
17.【2018届南宁市高三摸底】已知抛物线上一点到焦点的距离为.
(l)求抛物线的方程;
(2)抛物线上一点的纵坐标为1,过点的直线与抛物线交于两个不同的点(均与点不重合),设直线的斜率分别为,求证:为定值.
【答案】(1);(2)证明见解析.
【解析】试题分析:(1)由焦半径定义和点在抛物线上建立两个方程,两个未知数,可求得抛物线方程。(2)由(1)知抛物线的方程,及,,设过点的直线的方程为,代入得,由韦达定理可求得为定值上。
试题解析:(1)由抛物线的定义可知,则,
由点在抛物线上,则,
∴,则,
由,则,
∴抛物线的方程.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
18.【2018届广西柳州市高三上摸底】已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为5.
(1)求该抛物线的方程;
(2)已知抛物线上一点,过点作抛物线的两条弦和,且,判断直线是否过定点?并说明理由.
【答案】(1).(2)
【解析】试题分析:(1)求出抛物线的焦点坐标,结合题意列关于p的等式求p,则抛物线方程可求;
(2)由(1)求出M的坐标,设出直线DE的方程 ,联立直线方程和抛物线方程,化为关于y的一元二次方程后D,E两点纵坐标的和与积,利用 得到t与m的关系,进一步得到DE方程,由直线系方程可得直线DE所过定点.
试题解析:
(1)由题意设抛物线方程为,
其准线方程为,
∵到焦点的距离等于到其准线的距离,
∴,∴.
∴抛物线的方程为.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵
即,得: ,
∴,即或,
代人①式检验均满足,
∴直线的方程为: 或.
∴直线过定点(定点不满足题意,故舍去).
19.【2018届云南省昆明一中高三第一次摸底】已知动点满足: .
(1)求动点的轨迹的方程;
(2)设过点的直线与曲线交于两点,点关于轴的对称点为(点与点不重合),证明:直线恒过定点,并求该定点的坐标.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【答案】(1);(2)直线过定点 ,证明见解析.
试题解析:(1)由已知,动点到点, 的距离之和为,
且,所以动点的轨迹为椭圆,而, ,所以,
所以,动点的轨迹的方程: .
(2)设, ,则,由已知得直线的斜率存在,设斜率为,则直线的方程为:
由 得,
所以, ,
直线的方程为: ,所以,
令,则,
所以直线与轴交于定点.
20.【2018届湖北省宜昌市葛洲坝中学高三9月月考】已知椭圆
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
经过点,的四个顶点构成的四边形面积为.
(1)求椭圆的方程;
(2)为椭圆上的两个动点,是否存在这样的直线,使其满足:①直线的斜率与直线的斜率互为相反数;②线段的中点在直线上.若存在,求出直线和的方程;若不存在,请说明理由.
【答案】(1) ;(2) 直线的方程分别为,或,.
试题解析:
(1)由已知得,
解得,
∴椭圆的方程.
(2)设直线的方程为,代入,得
.(*)
设,,且是方程(*)的根,
∴,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
用代替上式中的,可得,
故中点横坐标为,
解得,
∴直线的方程分别为,或,.
21.【2018届重庆市巴蜀中学高三9月月考】已知椭圆 的离心率为,过点的椭圆的两条切线相互垂直.
(Ⅰ)求椭圆的方程;
(Ⅱ)在椭圆上是否存在这样的点,过点引抛物线的两条切线,切点分别为,且直线过点?若存在,指出这样的点有几个(不必求出点的坐标);若不存在,请说明理由.
【答案】(Ⅰ);(Ⅱ)满足条件的点有两个.
试题解析:
(Ⅰ)由椭圆的对称性,不妨设在轴上方的切点为,轴下方的切点为,
则,的直线方程为,
因为椭圆 的离心率为,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以椭圆,
所以 ,则,
所以椭圆方程为.
(Ⅱ)设点,,,
由,即,得,
∴抛物线在点处的切线的方程为,
即,
∵,∴.
∵点在切线上,∴.①
同理,.②
综合①、②得,点,的坐标都满足方程.
∵经过,两点的直线是唯一的,
∴直线的方程为,
∵点在直线上,∴,
∴点的轨迹方程为.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
又∵点在椭圆上,又在直线上,
∴直线经过椭圆内一点,
∴直线与椭圆交于两点.
∴满足条件的点有两个.
22.【2018届江苏省仪征中学高三10月检测】椭圆C: 的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列,记△的面积为S.
(1)求椭圆C的方程.
(2)试判断是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求S的范围.
【答案】(1) (2)5(3)
设直线的方程为,代入椭圆方程,消去,根据、、恰好构成等比数列,求出,进而表示出,即可得出结论。
表示出的面积,利用基本不等式,即可求出的范围。
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)依题意,直线斜率存在且,设直线的方程为(),、
由
,因为、、恰好构成等比数列,
所以,
即;
所以
此时
得,且(否则:,则,中至少有一个为,直线、中至少有一个斜率不存在,与已知矛盾)
所以;
所以
所以是定值为5;
(3)(,且)
所以 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费