由莲山课件提供http://www.5ykj.com/ 资源全部免费
第3课时 分段函数的应用
(60分)
1.(15分)[2017·安徽]某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(kg)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/kg)
50
60
70
销售量y(kg)
100
80
60
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入—成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
解:(1)根据题意,设y=kx+b,其中k,b为待定的常数,
由表中的数据得解得
∴y=-2x+200(40≤x≤80);
(2)根据题意得W=y ·(x-40)=(-2x+200)(x-40)=-2x2+280x-
8 000(40≤x≤80);
(3)由(2)可知:W=-2(x-70)2+1 800,∴当售价x在满足 40≤x≤70的范围内,利润W随着x的增大而增大;当售价在满足 70<x≤80的范围内,利润W随着x的增大而减小.∴当x=70时,利润W取得最大值,最大值为1 800元.
2.(15分)[2016·襄阳]襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数表达式为:
y=
(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润关于售价x(元/件)的函数表达式;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?
(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.
解:(1)W=
(2)由(1)知,当40≤x