2018年高中数学课下能力提升二十三圆与圆的位置关系北师大版必修2
加入VIP免费下载

本文件来自资料包: 《2018年高中数学课下能力提升二十三圆与圆的位置关系北师大版必修2》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 课时达标训练(二十三) 圆与圆的位置关系 一、选择题 ‎1.圆心在y轴上,半径为1,且过点(1,2)的圆的方程是(  )‎ A.x2+(y-2)2=1      B.x2+(y+2)2=1‎ C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1‎ ‎2.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是(  )‎ A.1<m<121 B.1≤m≤121‎ C.1<m<11 D.1≤m≤11‎ ‎3.两圆x2+y2+2ax+2ay+‎2a2-1=0和x2+y2+2bx+2by+2b2-2=0的公共弦中,最长的弦等于(  )‎ A.2 B.2‎ C. D.1‎ ‎4.两圆(x-a)2+y2=1和x2+(y-b)2=1外切的条件是(  )‎ A.a2+b2=4 B.a2+b2=2‎ C.=1 D.=4‎ ‎5.半径长为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为(  )‎ A.(x-4)2+(y-6)2=6‎ B.(x±4)2+(y-6)2=6‎ C.(x-4)2+(y-6)2=36‎ D.(x±4)2+(y-6)2=36‎ 二、填空题 ‎6.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,则实数a的值为________.‎ ‎7.点P在圆(x-4)2+(y-2)2=9上,点Q在圆(x+2)2+(y+1)2=4上,则|PQ|的最大值为________.‎ ‎8.与圆x2+y2-2x=0外切且与直线x+y=0相切于点M(3,-)的圆的方程为________.‎ 三、解答题 ‎9.已知集合M={(x,y)|x2+y2≤16},N={(x,y)|x2+(y-1)2≤a-1},若M∩N=N,求实数a的取值范围.‎ ‎10.已知圆C:(x-3)2+(y-4)2=4,‎ ‎(1)若直线l1过定点A(1,0),且与圆C相切,求l1的方程;‎ ‎(2)若圆D的半径为3,圆心在直线l2:x+y-2=0上,且与圆C外切,求圆D的方程.‎ 答案 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎1.解析:选A 设圆心为(0,a),则=1,∴a=2.故圆的方程为x2+(y-2)2=1.‎ ‎2.解析:选B 两圆的圆心和半径分别为O1(0,0),r1=,O2(-3,4),r2=6,它们有公共点,则两圆相切或相交.‎ ‎∴|-6|≤ ≤+6.解之,得1≤m≤121.‎ ‎3.解析:选B 将两圆化成标准式分别为 ‎(x+a)2+(y+a)2=1,(x+b)2+(y+b)2=2,‎ 两圆相交时最长的公共弦应该为小圆的直径2.‎ ‎4.解析:选A 两圆的圆心坐标为(a,0)和(0,b),由两圆外切的条件得 =1+1,即a2+b2=4.‎ ‎5.解析:选D ∵所求圆的半径为6,而A、B中的圆的半径为,不符合题意,∴排除A、B.所求圆的圆心为(4,6)时,两圆的圆心距d==5=6-1,这时两圆内切,当所求圆的圆心为(-4,6)时,圆心距d==5=6-1,这时两圆内切.‎ ‎∴所求圆的圆心为(±4,6),半径为6.‎ ‎6.解析:∵圆心分别为(0,0)和(-4,a),半径为1和5,两圆外切时有=1+5,∴a=±2,‎ 两圆内切时有=5-1,∴a=0.‎ 综上a=±2或a=0.‎ 答案:±2或0‎ ‎7.解析:圆心距d= =3,而两圆的半径分别为r1=3,r2=2,∴|PQ|的最大值=d+r1+r2=3+5.‎ 答案:3+5‎ ‎8.解析:设所求圆的方程为(x-a)2+(y-b)2=r2(r>0).‎ 则=r+1,①‎ =,②‎ =r.③‎ 解①②③得a=4,b=0,r=2或a=0,b=-4,r=6,‎ 即所求圆的方程为(x-4)2+y2=4或x2+(y+4)2=36.‎ 答案:(x-4)2+y2=4或x2+(y+4)2=36‎ ‎9.解:∵M∩N=N,∴N⊆M,‎ ‎①当N=∅时,即a<1时满足条件;‎ ‎②当N≠∅时,若a=1,集合N={(x,y)|(0,1)},‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵点(0,1)在圆x2+y2=16内部,∴N⊆M.‎ 若a>1,要使N⊆M,须圆x2+(y-1)2=a-1,‎ 内切或内含于圆x2+y2=16,‎ ‎∴4-≥1,解得1≤a≤10,‎ 又a>1,∴1<a≤10.综上所述,a的取值范围为(-∞,10].‎ ‎10.解:(1)①若直线l1的斜率不存在,即直线是x=1,符合题意.‎ ‎②若直线l1的斜率存在,‎ 设直线l1为y=k(x-1),即kx-y-k=0.‎ 由题意知,圆心(3,4)到已知直线l1的距离等于半径2,即=2,解之得k=.‎ 所求直线l1的方程为x=1或3x-4y-3=0.‎ ‎(2)依题意设D(a,2-a),‎ 又已知圆C的圆心(3,4),r=2,‎ 由两圆外切,可知|CD|=5,‎ ‎∴可知 =5,解得a=3,或a=-2,‎ ‎∴D(3,-1)或D(-2,4).‎ ‎∴所求圆的方程为(x-3)2+(y+1)2=9或(x+2)2+(y-4)2=9.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料