2018年中考数学第28讲图形的相似课后练习(浙江省有答案)
加入VIP免费下载

本文件来自资料包: 《2018年中考数学第28讲图形的相似课后练习(浙江省有答案)》 共有 3 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 课后练习28 图形的相似 第1课时 相似形 A组 ‎1.(2016·杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=(  )‎ A. B. C. D.1‎ 第1题图 ‎2.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD∶CD=3∶2,则tanB=(  )‎ A. B. C. D. 第2题图 ‎3.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③=;④△ADE与△ABC的面积比为1∶4,其中正确的有(  )‎ A.4个 B.3个 C.2个 D.1个 第3题图 ‎4.(2016·河北)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 第4题图 ‎5.(2016·包头)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是(  )‎ A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE 第5题图 ‎6.(2016·毕节)在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=2,AB=3,则BD=        .‎ 第6题图 ‎7.(2015·连云港)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为        .‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 第7题图 ‎8.(2015·娄底)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(-3,0),∠B=30°,则点B的坐标为        .‎ ‎   ‎ ‎ 第8题图 ‎9.(2015·湘潭)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.‎ ‎(1)求证:△BDE∽△BAC;‎ ‎(2)已知AC=6,BC=8,求线段AD的长度.‎ ‎ ‎ ‎ 第9题图 ‎        ‎ ‎10.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连结DE,F为线段DE上一点,且∠AFE=∠B.‎ ‎(1)求证:△ADF∽△DEC;‎ ‎(2)若AB=8,AD=6,AF=4,求AE的长.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎ 第10题图 ‎        ‎ B组 ‎11.如图所示,一般书本的纸张是原纸张多次对开得到的,矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依次类推,若各种开本的矩形都相似,那么等于(  )            ‎ A.0.618 B. C. D.2‎ 第11题图 ‎12.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连结DE,当△BDE是直角三角形时,t的值为(  )‎ A.2 B.2.5或3.5 C.3.5或4.5 D.2或3.5或4.5‎ 第12题图 ‎13.如图,点C,D在线段AB上,△PCD是正三角形.‎ ‎(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB;‎ ‎(2)当△ACP∽△PDB时,求∠APB的度数.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎ 第13题图 ‎      ‎ C组 ‎14.(2016·武汉)在△ABC中,P为边AB上一点.‎ ‎(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;‎ ‎(2)若M为CP的中点,AC=2,‎ ‎①如图2,若∠PBM=∠ACP,AB=3,求BP的长;‎ ‎②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.‎ ‎ ‎ 第14题图 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 参考答案 课后练习28 图形的相似 第1课时 相似形 A组 ‎1.B  2.D  3.A  4.C  5.B  6.  7. 8.(-3-,3)‎ ‎9.(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,∵∠B=∠B,∴△BDE∽△BAC; (2)由勾股定理得,AB=10,由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°,∴BE=AB-AE=10-6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8-CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=3.‎ ‎10.(1)略. (2)∵▱ABCD,∴CD=AB=8.由(1)知△ADF∽△DEC,∴=,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.‎ B组 ‎11.B 12.D ‎13.(1)当CD2=AC·DB时,△ACP∽△PDB.∵△PCD是等边三角形,∴∠PCD=∠PDC=60°.∴∠ACP=∠PDB=120°.若CD2=AC·DB,则根据相似三角形的判定定理,得△ACP∽△PDB.‎ ‎(2)当△ACP∽△PDB时,∠APC=∠PBD,∵∠PDB=120°,∴∠DPB+∠DBP=60°.∴∠APC+∠BPD=60°.∴∠APB=∠CPD+∠APC+∠BPD=120°.‎ C组 ‎14.(1)∵∠ACP=∠B,∠BAC=∠CAP,∴△ACP∽△ABC,∴AC∶AB=AP∶AC,∴AC2=AP·AB;‎ ‎(2)①如图,作CQ∥BM交AB延长线于Q,则∠PBM=∠AQC,设BP=x,则PQ=2x,∵∠AQC=∠PBM=∠ACP,∠PAC=∠CAQ,∴△APC∽△ACQ,∴AC2=AP·AQ,得:22=(3-x)(3+x),∴x=,即BP=;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 第14题图 ‎②如图,作CQ⊥AB于点Q,作CP0=CP交AB于点P0,∵AC=2,∠A=60°,∠ABC=45°,∴AQ=1,CQ=BQ=,设AP0=x,则P0Q=PQ=1-x,BP=-1+x,∵∠BPM=∠CP0A,∠BMP=∠CAP0,∴△AP0C∽△MPB,∴=,∴MP·P0C=P0C2==AP0·BP=x(-1+x),解得x=-.∴BP=-1+-=-1.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料