2015高考数学二轮复习高效课堂测试卷7(文科带答案)
1.(2014年安徽高考)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.
(1)讨论f(x)在其定义域上的单调性;
(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.
解:(1)f(x)的定义域为(-∞,+∞),f′(x)=1+a-2x-3x2.
令f′(x)=0,得x1=,x2=,x1<x2,
所以f′(x)=-3(x-x1)(x-x2).
当x<x1或x>x2时,f′(x)<0;当x1<x<x2时,f′(x)>0.
故f(x)在(-∞,x1)和(x2,+∞)内单调递减,
在(x1,x2)内单调递增.
(2)因为a>0,所以x1<0,x2>0.
①当a≥4时,x2≥1,由(1)知,f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.
②当0<a<4时,x2<1.由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值.
又f(0)=1,f(1)=a,所以当0<a<1时,f(x)在x=1处取得最小值;
当a=1时,f(x)在x=0和x=1处同时取得最小值;
当1<a<4时,f(x)在x=0处取得最小值.
2.已知函数f(x)=ex,g(x)=ax2+bx+1(a,b∈R).
(1)若a≠0,则a,b满足什么条件时,曲线y=f(x)与y=g(x)在x=0处总有相同的切线;
(2)当a=1时,求函数h(x)=的单调递减区间;
(3)当a=0时,若f(x)≥g(x)对任意的x∈R恒成立,求b的取值的集合.
解:(1)∵f′(x)=ex,∴f′(0)=1,又f(0)=1,
∴y=f(x)在x=0处的切线方程为y=x+1,
又∵g′(x)=2ax+b,∴g′(0)=b,又g(0)=1,
∴y=g(x)在x=0处的切线方程为y=bx+1,
∴当a≠0,a∈R且b=1时,曲线y=f(x)与y=g(x)在x=0处总有相同的切线.
(2)由a=1,得h(x)=,
∴h′(x)==-,
由h′(x)=0,得x1=1,x2=1-b,
∴当b>0时,函数h(x)的单调递减区间为(-∞,1-b),(1,+∞);
当b=0时,函数h(x)的单调递减区间为(-∞,+∞);
当b<0时,函数h(x)的单调递减区间为(-∞,1),(1-b,+∞).
(3)由a=0,得φ(x)=f(x)-g(x)=ex-bx-1,
∴φ′(x)=ex-b,
①当b≤0时,φ′(x)≥0,函数φ(x)在R上单调递增,
又φ(0)=0,∴当x∈(-∞,0)时,φ(x)<0,与函数f(x)≥g(x)矛盾.
②当b>0时,令φ′(x)>0,得x>ln b;令φ′(x)<0,得x<ln b,
- 3 -
∴函数φ(x)在(-∞,ln b)上单调递减;在(ln b,+∞)上单调递增.
当0<b<1时,ln b<0,又φ(0)=0,∴φ(ln b)<0,与函数f(x)≥g(x)矛盾,
当b>1时,同理φ(ln b)<0,与函数f(x)≥g(x)矛盾,
当b=1时,ln b=0,∴φ(x)≥φ(0)=0,故b=1满足题意.综上所述,b的取值的集合为{1}.
3.(2014年北京高考)已知函数f(x)=2x3-3x.
(1)求f(x)在区间[-2,1]上的最大值;
(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;
(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)
解:(1)由f(x)=2x3-3x得f′(x)=6x2-3.
令f′(x)=0,得x=-或x=.
因为f(-2)=-10,f=,f=-,f(1)=-1,
所以f(x)在区间[-2,1]上的最大值为f=.
(2)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),
则y0=2x-3x0,且切线斜率为k=6x-3,
所以切线方程为y-y0=(6x-3)(x-x0),
因此t-y0=(6x-3)(1-x0).
整理得4x-6x+t+3=0.
设g(x)=4x3-6x2+t+3,
则“过点P(1,t)存在3条直线与曲线y=f(x)相切”等价于“g(x)有3个不同零点”.
g′(x)=12x2-12x=12x(x-1),
g(x)与g′(x)的情况如下:
x
(-∞,0)
0
(0,1)
1
(1,+∞)
g′(x)
+
0
-
0
+
g(x)
t+3
t+1
所以,g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.
当g(0)=t+3≤0,即t≤-3时,此时g(x)在区间(-∞,1]和(1,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.
当g(1)=t+1≥0,即t≥-1时,此时g(x)在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.
当g(0)>0且g(1)<0,即-3<t<-1时,因为g(-1)=t-7<0,g(2)=t+11>0,所以g(x)分别在区间[-1,0),[0,1)和[1,2)上恰有1个零点,由于g(x)在区间(-∞,0)和(1,+∞)上单调,所以g(x)分别在区间(-∞,0)和[1,+∞)上恰有1个零点.
综上可知,当过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(-3,-1).
(3)过点A(-1,2)存在3条直线与曲线y=f(x)相切;
过点B(2,10)存在2条直线与曲线y=f(x)相切;
过点C(0,2)存在1条直线与曲线y=f(x)相切.
4.(2014年山东高考)设函数f(x)=-k(k为常数,e=2.718 28…是自然对数的底数).
(1)当k≤0时,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
- 3 -
解:(1)函数y=f(x)的定义域为(0,+∞).
f′(x)=-k
=-
=.
由k≤0可得ex-kx>0,
所以当x∈(0,2)时,f′(x)<0,函数y=f(x)单调递减,
当x∈(2,+∞)时,f′(x)>0,函数y=f(x)单调递增.
所以f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
(2)由(1)知,k≤0时,函数f(x)在(0,2)内单调递减,
故f(x)在(0,2)内不存在极值点;
当k>0时,设函数g(x)=ex-kx,x∈[0,+∞).
因为g′(x)=ex-k=ex-eln k,
当0<k≤1时,
当x∈(0,2)时,g′(x)=ex-k>0,y=g(x)单调递增.
故f(x)在(0,2)内不存在两个极值点;
当k>1时,
得x∈(0,ln k)时,g′(x)<0,函数y=g(x)单调递减.
当x∈(ln k,+∞)时,g′(x)>0,函数y=g(x)单调递增.
所以函数y=g(x)的最小值为g(ln k)=k(1-ln k).
函数f(x)在(0,2)内存在两个极值点,
当且仅当解得e<k<,
综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为.
- 3 -