由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年河北省石家庄中考数学模拟试卷(6月份)
一、选择题(本大题共16个小题;1-10小题,每小题3分,11-16小题,每小题3分.共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)﹣2的绝对值是( )
A.﹣2 B.2 C.±2 D.
2.(3分)如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是( )
A. B. C. D.
3.(3分)下列计算正确的是( )
A.a2+a2=a4 B.a6÷a2=a4 C.(a2)3=a5 D.(a﹣b)2=a2﹣b2
4.(3分)据统计,2015年广州地铁日均客运量均为6 590 000人次,将6 590 000用科学记数法表示为( )
A.6.59×104 B.659×104 C.65.9×105 D.6.59×106
5.(3分)方程=3的解是( )
A.﹣2 B.﹣1 C.2 D.4
6.(3分)不等式组的解集是( )
A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<3
7.(3分)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为( )
A.b=a(1+8.9%+9.5%) B.b=a(1+8.9%×9.5%)
C.b=a(1+8.9%)(1+9.5%) D.b=a(1+8.9%)2(1+9.5%)
8.(3分)下列说法中,正确的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
9.(3分)下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是( )
A.a>0 B.a=0 C.c>0 D.c=0
10.(3分)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为( )
A.﹣6 B.6 C.18 D.30
11.(2分)如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠CED的值为( )
A. B. C. D.
12.(2分)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有( )
A.5个 B.4个 C.3个 D.2个
13.(2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
A.a<0 B.b2﹣4ac<0
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C.当﹣1<x<3时,y>0 D.﹣
14.(2分)如图所示是放置在正方形网格中的一个△ABC,则tan∠ABC的值为( )
A. B. C.2 D.
15.(2分)如图,△ABC中,DE∥BC, =,AE=2cm,则AC的长是( )
A.2cm B.4cm C.6cm D.8cm
16.(2分)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )
A.6 B.2+1 C.9 D.
二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)
17.(3分)不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是 .
18.(3分)因式分解:a3﹣a= .
19.(3分)当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20.(3分)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是 .
三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)
21.(8分)(1)解方程组;
(2)若点A是平面直角坐标系中坐标轴上的点,(1)中的解x,y分别为点B的横、纵坐标,求AB的最小值及AB取得最小值时点A的坐标.
22.(8分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.
23.(9分)在Rt△ABC中,AC=8,BC=6,∠C=90°,AD是∠CAB的角平分线,交BC于点D.
(1)求AB的长;
(2)求CD的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
24.(10分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数(名)
1
3
2
3
24
1
每人月工资(元)
21000
8400
2025
2200
1800
1600
950
请你根据上述内容,解答下列问题:
(1)该公司“高级技工”有 名;
(2)所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;
(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;
(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.
25.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.
(1)求y与x之间的函数关系式;
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?
(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26.(10分)如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=8,OC=6.
(1)求直线AC的表达式;
(2)若直线y=x+b与矩形OABC有公共点,求b的取值范围;
(3)直线l:y=kx+10与矩形OABC没有公共点,直接写出k的取值范围.
27.(11分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上,∠OAB=90°且OA=AB,OB=6,OC=5.
(1)求点A和点B的坐标;
(2)点P是线段OB上的一个动点(点P不与点O、B重合),以每秒1个单位的速度由点O向点B运动,过点P的直线a与y轴平行,直线a交边OA或边AB于点Q,交边OC或边BC于点R,设点P运动时间为t,线段QR的长度为m,已知t=4时,直线a恰好过点C.
①当0<t<3时,求m关于t的函数关系式;
②点P出发时点E也从点B出发,以每秒1个单位的速度向点O运动,点P停止时点E也停止.设△QRE的面积为S,求S与t的函数关系式;
③直接写出②中S的最大值是 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年河北省石家庄二十八中中考数学模拟试卷(6月份)
参考答案与试题解析
一、选择题(本大题共16个小题;1-10小题,每小题3分,11-16小题,每小题3分.共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)﹣2的绝对值是( )
A.﹣2 B.2 C.±2 D.
【解答】解:﹣2的绝对值是:2.
故选:B.
2.(3分)如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是( )
A. B. C. D.
【解答】解:∵几何体的主视图由3个小正方形组成,下面两个,上面一个靠左,
∴这个几何体可以是.
故选:A.
3.(3分)下列计算正确的是( )
A.a2+a2=a4 B.a6÷a2=a4 C.(a2)3=a5 D.(a﹣b)2=a2﹣b2
【解答】解:A、a2+a2=2a2,故本选项错误;
B、a6÷a2=a4,故本选项正确;
C、(a2)3=a6,故本选项错误;
D、(a﹣b)2=a2﹣2ab+b2,故本选项错误.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故选B.
4.(3分)据统计,2015年广州地铁日均客运量均为6 590 000人次,将6 590 000用科学记数法表示为( )
A.6.59×104 B.659×104 C.65.9×105 D.6.59×106
【解答】解:将6 590 000用科学记数法表示为:6.59×106.
故选:D.
5.(3分)方程=3的解是( )
A.﹣2 B.﹣1 C.2 D.4
【解答】解:去分母得:2x+1=3x﹣3,
解得:x=4,
经检验x=4是分式方程的解,
故选D
6.(3分)不等式组的解集是( )
A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<3
【解答】解:
解不等式①,得
x>﹣1,
解不等式②,得
x>3,
由①②可得,x>3,
故原不等式组的解集是x>3.
故选B.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
7.(3分)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为( )
A.b=a(1+8.9%+9.5%) B.b=a(1+8.9%×9.5%)
C.b=a(1+8.9%)(1+9.5%) D.b=a(1+8.9%)2(1+9.5%)
【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,
∴2014年我省财政收入为a(1+8.9%)亿元,
∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,
∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);
故选C.
8.(3分)下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
【解答】解:A、不可能事件发生的概率为0,所以A选项正确;
B、随机事件发生的概率在0与1之间,所以B选项错误;
C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;
D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.
故选A.
9.(3分)下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是( )
A.a>0 B.a=0 C.c>0 D.c=0
【解答】解:∵一元二次方程有实数根,
∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,
∴ac≤4,且a≠0;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;
B、a=0不符合一元二次方程的定义,此选项错误;
C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;
D、若c=0,则ac=0≤4,此选项正确;
故选:D.
10.(3分)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为( )
A.﹣6 B.6 C.18 D.30
【解答】解:∵x2+4x﹣4=0,即x2+4x=4,
∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.
故选B
11.(2分)如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠CED的值为( )
A. B. C. D.
【解答】解:∵△ABC折叠点A落在BC边上的点D处,
∴AE=DE=3,
∵AC=4,
∴CE=AC﹣AE=4﹣3=1,
在Rt△CDE中,根据勾股定理得,CD===2,
所以,sin∠CED==.
故选B.
12.(2分)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.5个 B.4个 C.3个 D.2个
【解答】解:过A作AE⊥BC,
∵AB=AC,
∴EC=BE=BC=4,
∴AE==3,
∵D是线段BC上的动点(不含端点B、C).
∴3≤AD<5,
∴AD=3或4,
∵线段AD长为正整数,
∴AD的可以有三条,长为4,3,4,
∴点D的个数共有3个,
故选:C.
13.(2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
A.a<0 B.b2﹣4ac<0
C.当﹣1<x<3时,y>0 D.﹣
【解答】解:A、∵抛物线的开口向上,∴a>0,故选项A错误;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选项B错误;
C、由函数图象可知,当﹣1<x<3时,y<0,故选项C错误;
D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故选项D正确.
故选D.
14.(2分)如图所示是放置在正方形网格中的一个△ABC,则tan∠ABC的值为( )
A. B. C.2 D.
【解答】解:过点A向CB引垂线,与CB交于D,
在△ABD是直角三角形,
∵BD=4,AD=2,
∴tan∠ABC===,
故选:D.
15.(2分)如图,△ABC中,DE∥BC, =,AE=2cm,则AC的长是( )
A.2cm B.4cm C.6cm D.8cm
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:∵DE∥BC,
∴=,
∵,AE=2cm,
∴=,
∴AC=6(cm),
故选C.
16.(2分)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )
A.6 B.2+1 C.9 D.
【解答】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,
此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,
∵AB=10,AC=8,BC=6,
∴AB2=AC2+BC2,
∴∠C=90°,
∵∠OP1B=90°,
∴OP1∥AC
∵AO=OB,
∴P1C=P1B,
∴OP1=AC=4,
∴P1Q1最小值为OP1﹣OQ1=1,
如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
P2Q2最大值=5+3=8,
∴PQ长的最大值与最小值的和是9.
故选C.
二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)
17.(3分)不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是 .
【解答】解:∵不透明的袋子里装有2个白球,1个红球,
∴球的总数=2+1=3,
∴从袋子中随机摸出1个球,则摸出白球的概率=.
故答案为:.
18.(3分)因式分解:a3﹣a= a(a+1)(a﹣1) .
【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),
故答案为:a(a+1)(a﹣1)
19.(3分)当2≤x≤5时,二次函数y=﹣(x﹣1)2+2的最大值为 1 .
【解答】解:∵a=﹣1<0,
∴当x>1时,y随x的增大而减小,
∴当x=2时,二次函数y=﹣(x﹣1)2+2的最大值为1,
故答案为:1.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20.(3分)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是 π .
【解答】解:取AB的中点O、AE的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,
∵在等腰Rt△ABC中,AC=BC=2,
∴AB=BC=4,
∴OC=AB=2,OP=AB=2,
∵M为PC的中点,
∴OM⊥PC,
∴∠CMO=90°,
∴点M在以OC为直径的圆上,
点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=2,
∴M点的路径为以EF为直径的半圆,
∴点M运动的路径长=•2π•1=π.
故答案为π.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)
21.(8分)(1)解方程组;
(2)若点A是平面直角坐标系中坐标轴上的点,(1)中的解x,y分别为点B的横、纵坐标,求AB的最小值及AB取得最小值时点A的坐标.
【解答】解:(1),
①×2+②得:7x=21,
解得:x=3,
把x=3代入②得:y=1,
则方程组的解为;
(2)由题意得:B(3,1),
当A坐标为(3,0)时,AB取得最小值为1.
22.(8分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.
【解答】证明:∵∠ACD=∠BCE,
∴∠ACB=∠DCE,
在△ABC和△DEC中,,
∴△ABC≌△DEC(SAS),
∴∠A=∠D.
23.(9分)在Rt△ABC中,AC=8,BC=6,∠C=90°,AD是∠CAB的角平分线,交BC于点D.
(1)求AB的长;
(2)求CD的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)∵在Rt△ABC中,AC=8,BC=6,∠C=90°,
∴AB===10;
(2)过点D作DE⊥AB于E,
∵AD平分∠BAC,∠C=90°,
∴CD=DE.
在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AE=AC=8,
∵AB=10,
∴BE=AB﹣AE=10﹣8=2.
设CD=DE=x,则BD=6﹣x,
在Rt△BDE中,DE2+BE2=BD2,
x2+22=(6﹣x)2,
解得x=,
即CD的长为.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
24.(10分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数(名)
1
3
2
3
24
1
每人月工资(元)
21000
8400
2025
2200
1800
1600
950
请你根据上述内容,解答下列问题:
(1)该公司“高级技工”有 16 名;
(2)所有员工月工资的平均数x为2500元,中位数为 1700 元,众数为 1600 元;
(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;
(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.
【解答】解:(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
在这些数中1600元出现的次数最多,因而众数是1600元;
(3)这个经理的介绍不能反映该公司员工的月工资实际水平.
用1700元或1600元来介绍更合理些.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(4)≈1713(元).
能反映该公司员工的月工资实际水平.
25.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.
(1)求y与x之间的函数关系式;
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?
(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?
【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.
(2)设每星期利润为W元,
W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.
∴x=55时,W最大值=6750.
∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.
(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,
当x=52时,销售300+30×8=540,
当x=58时,销售300+30×2=360,
∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.
26.(10分)如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=8,OC=6.
(1)求直线AC的表达式;
(2)若直线y=x+b与矩形OABC有公共点,求b的取值范围;
(3)直线l:y=kx+10与矩形OABC没有公共点,直接写出k的取值范围.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:
(1)∵OA=8,OC=6,
∴A(8,0),C(0,6),
设直线AC表达式为y=kx+b,
∴,解得,
∴直线AC表达式为y=﹣x+6;
(2)∵直线y=x+b可以看到是由直线y=x平移得到,
∴当直线y=x+b过A、C时,直线与矩形OABC有一个公共点,如图1,
当过点A时,代入可得0=8+b,解得b=﹣8,
当过点C时,可得b=6,
∴直线y=x+b与矩形OABC有公共点时,b的取值范围为﹣8≤b≤6;
(3)∵y=kx+10,
∴直线l过D(0,10),且B(8,6),
如图2,直线l绕点D旋转,当直线过点B时,与矩形OABC有一个公共点,逆时针旋转到与y轴重合时与矩形OABC有公共点,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
当过点B时,代入可得6=8k+10,解得k=﹣,
∴直线l:y=kx+10与矩形OABC没有公共点时k的取值范围为k>﹣.
27.(11分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上,∠OAB=90°且OA=AB,OB=6,OC=5.
(1)求点A和点B的坐标;
(2)点P是线段OB上的一个动点(点P不与点O、B重合),以每秒1个单位的速度由点O向点B运动,过点P的直线a与y轴平行,直线a交边OA或边AB于点Q,交边OC或边BC于点R,设点P运动时间为t,线段QR的长度为m,已知t=4时,直线a恰好过点C.
①当0<t<3时,求m关于t的函数关系式;
②点P出发时点E也从点B出发,以每秒1个单位的速度向点O运动,点P停止时点E也停止.设△QRE的面积为S,求S与t的函数关系式;
③直接写出②中S的最大值是 5 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)由题意△OAB是等腰直角三角形,
∵OB=6,
∴A(3,3),B(6,0).
(2)∵A(3,3),B(6,0),
∴直线OA的解析式为y=x,直线AB的解析式y=﹣x+6,
∵t=4时,直线a恰好过点C,OC=5,
∴C(4,﹣3),
∴直线OC的解析式为y=﹣x,直线BC的解析式为y=x﹣9,
①当0<t<3时,Q(t,t),R(t,﹣t),
∴m=t+t=t.
②当0<t<3时,S=PE•QR=•(6﹣2t)•t=﹣t2+t,
当3<t<4时,S=•PE•QR=(2t﹣6)•(﹣t+6+t)=﹣t2+﹣18,
当4≤t<6时,S=•PE•QR=(2t﹣6)(﹣t+6﹣t+9)=﹣t2+t﹣45.
③当0<t<3时,∵S=﹣t2+t=﹣(x﹣)2+,∴t=时,S的最大值为.
当3<t≤4时,∵S=﹣t2+﹣18=﹣(t﹣)2+×﹣18,∴t=4时,S的值最大,最大值为5.
当4≤t<6时,S=﹣t2+t﹣45=﹣(t﹣)2+,∴t=时,S的最大值为,
综上所述,t=4时,S的值最大,最大值为5,
故答案为5.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费