2018年中考数学一模试题(广水市马坪镇带答案和解析)
加入VIP免费下载

387.doc

本文件来自资料包: 《2018年中考数学一模试题(广水市马坪镇带答案和解析)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2018年湖北省广水市马坪镇中考数学一模试卷 ‎ 一、选择题(本大题共10小题,每小题3分,共30分。每小题给出的四个选项中,只有一个是正确的) ‎ ‎1.(3分)下列说法不正确的是(  )‎ A.0既不是正数,也不是负数 B.绝对值最小的数是0‎ C.绝对值等于自身的数只有0和1‎ D.平方等于自身的数只有0和1‎ ‎2.(3分)下列运算正确的是(  )‎ A.m6÷m2=m3 B.(x+1)2=x2+1 C.(3m2)3=9m6 D.2a3•a4=2a7‎ ‎3.(3分)如图是某几何体的三视图,则该几何体的全面积等于(  )‎ A.112 B.136 C.124 D.84‎ ‎4.(3分)一组互不相等的数据,它的中位数为80,小于中位数的数的平均数为70,大于中位数的数的平均数为96,设这组数据的平均数为,则=(  )‎ A.82 B.83 C.80≤≤82 D.82≤≤83‎ ‎5.(3分)如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在(  )‎ A.点A B.点B C.A,B之间 D.B,C之间 ‎6.(3分)下面是小明按照语句画出的四个图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a、b、c;(4)线段AB、CD相交于点B.他所画图形中,正确的个数是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.1 B.2 C.3 D.4‎ ‎7.(3分)玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有(  )‎ A. B.‎ C. D.‎ ‎8.(3分)如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是(  )‎ A.80 B.89 C.99 D.109‎ ‎9.(3分)如图,函数y=﹣x2+bx+c的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x=﹣1,在下列结论中,错误的是(  )‎ A.顶点坐标为(﹣1,4)‎ B.函数的解析式为y=﹣x2﹣2x+3‎ C.当x<0时,y随x的增大而增大 D.抛物线与x轴的另一个交点是(﹣3,0)‎ ‎10.(3分)如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∽△AEF;③;④.其中正确的结论的个数是(  )‎ A.1 B.2 C.3 D.4‎ ‎ ‎ ‎ ‎ 二、填空题(本小题共6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号的横线上.) ‎ ‎11.(3分)万州长江三桥位于万州主城区,于牌楼接到跨越长江,大桥连接长江两岸的过境公路交通和城区过江交通,具有公路桥梁和城市桥梁双重功能,桥梁主线总长2120米,把数据2120米用科学记数法表示为   米.‎ ‎12.(3分)2008年北京奥运会的吉祥物是“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”等五个福娃,现将三张分别印有“欢欢”、“迎迎”、“妮妮”这三个吉祥物图案的卡片(卡片形状、大小一样,质地相同)放入一个盒中,小明从盒中任取一张,取到“贝贝”这张卡片是   事件(填“必然”或“不可能”或“随机”).‎ ‎13.(3分)如图,⊙O的直径AB与弦EF相交于点P,交角为45°,若PE2+PF2=8,则AB等于   .‎ ‎14.(3分)如图,点P是Rt△ABC斜边AB上的任意一点(A、B两点除外),过点P作一条直线,使截得的三角形与Rt△ABC相似,这样的直线可以作   条.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎15.(3分)如图,长为1的线段AB在x轴上移动C(0,1)、D(0,2),则AC+BD的最小值是   .‎ ‎16.(3分)高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离y1、y2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有   (把所有正确结论的序号都填在横线上).‎ ‎ ‎ ‎ ‎ 三、解答题(本题共9小题,共72分,解答应写出必要演算步骤、文字说明或证明过程.) ‎ ‎17.(5分)计算:﹣12018+37×3﹣5+2﹣2+(π﹣2018)0‎ ‎18.(6分)解方程: +﹣=1.‎ ‎19.(6分)如图,在平面直角坐标系中,反比例函数y=(x>‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D.‎ ‎(1)点D的横坐标为   (用户含m的代数式表示).‎ ‎(2)当CD=时,求反比例函数所对应的函数表达式.‎ ‎20.(7分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.‎ ‎21.(8分)为了了解成都市初中学生“数学核心素养”的掌握情况,教育科学院命题教师赴某校初三年级进行调 研,命题教师将随机抽取的部分学生成绩(得分为整数,满分 160 分)分为 5 组:第一组 85~100;第二组100~115;第三组 115~130;第四组 130~145;第五组 145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(1)本次调查共随机抽取了该年级多少名学生?成绩为第五组的有多少名学生?‎ ‎(2)针对考试成绩情况,现各组分别派出1名代表(分别用 A、B、C、D、E 表示5个小组中选出来的同学),命题教师从这5名同学中随机选出两名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名同学刚好来自第一、五组的概率.‎ ‎22.(8分)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O上一动点且在第一象限内,过点P作⊙O的切线,与x、y轴分别交于点A、B.‎ ‎(1)求证:△OBP与△OPA相似;‎ ‎(2)当点P为AB中点时,求出P点坐标;‎ ‎(3)在⊙O上是否存在一点Q,使得以Q,O,A、P为顶点的四边形是平行四边形.若存在,试求出Q点坐标;若不存在,请说明理由.‎ ‎23.(10分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.‎ ‎(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.‎ ‎(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?‎ ‎24.(10分)阅读下列材料,完成任务:‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 自相似图形 定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.‎ 任务:‎ ‎(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   ;‎ ‎(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为   ;‎ ‎(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).‎ 请从下列A、B两题中任选一条作答:我选择   题.‎ A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);‎ ‎②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);‎ B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);‎ ‎②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎25.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.‎ ‎(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);‎ ‎(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;‎ ‎(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 参考答案与试题解析 一、选择题(本大题共10小题,每小题3分,共30分) ‎ ‎1.(3分)下列说法不正确的是(  )‎ A.0既不是正数,也不是负数 B.绝对值最小的数是0‎ C.绝对值等于自身的数只有0和1‎ D.平方等于自身的数只有0和1‎ ‎【解答】解:A、B、D均正确,绝对值等于它自身的数是所有非负数,所以C错误,‎ 故选:C.‎ ‎ ‎ ‎2.(3分)下列运算正确的是(  )‎ A.m6÷m2=m3 B.(x+1)2=x2+1 C.(3m2)3=9m6 D.2a3•a4=2a7‎ ‎【解答】解:A、原式=m4,不符合题意;‎ B、原式=x2+2x+1,不符合题意;‎ C、原式=27m6,不符合题意;‎ D、原式=2a7,符合题意,‎ 故选:D.‎ ‎ ‎ ‎3.(3分)如图是某几何体的三视图,则该几何体的全面积等于(  )‎ A.112 B.136 C.124 D.84‎ ‎【解答】解:如图:‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由勾股定理=3,‎ ‎3×2=6,‎ ‎6×4÷2×2+5×7×2+6×7‎ ‎=24+70+42‎ ‎=136.‎ 故选:B.‎ ‎ ‎ ‎4.(3分)一组互不相等的数据,它的中位数为80,小于中位数的数的平均数为70,大于中位数的数的平均数为96,设这组数据的平均数为,则=(  )‎ A.82 B.83 C.80≤≤82 D.82≤≤83‎ ‎【解答】解:大于中位数与小于中位数的数个数相同,可以设都是m个.‎ 当这组数有偶数个时,则中位数不是这组数中的数,则这组数有2m个,则平均数是: =83;‎ 当这组数据的个数是奇数个时,则这组数有2m+1个,则平均数是: =83﹣,‎ 而m≥1,因而0<≤1‎ ‎∴83﹣≥83﹣1=82且83﹣<83.‎ 故82≤<83.‎ 故选:D.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎5.(3分)如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在(  )‎ A.点A B.点B C.A,B之间 D.B,C之间 ‎【解答】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),‎ ‎②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),‎ ‎③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),‎ ‎④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,‎ ‎⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.‎ ‎∴该停靠点的位置应设在点A;‎ 故选:A.‎ ‎ ‎ ‎6.(3分)下面是小明按照语句画出的四个图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a、b、c;(4)线段AB、CD相交于点B.他所画图形中,正确的个数是(  )‎ A.1 B.2 C.3 D.4‎ ‎【解答】解:(1)正确,C在直线EF上;‎ ‎(2)正确,A不在直线l上;‎ ‎(3)正确,三条线段相交于O点;‎ ‎(4)错误,两条线段相交于B外一点.‎ 故选:C.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎7.(3分)玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有(  )‎ A. B.‎ C. D.‎ ‎【解答】解:根据总天数是60天,可得x+y=60;根据乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.‎ 则可列方程组为.‎ 故选:C.‎ ‎ ‎ ‎8.(3分)如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是(  )‎ A.80 B.89 C.99 D.109‎ ‎【解答】解:第①个图形中一共有3个点,3=2+1,‎ 第②个图形中一共有8个点,8=4+3+1,‎ 第③个图形中一共有15个点,15=6+5+3+1,‎ ‎…,‎ 按此规律排列下去,第n个图形中的点数一共有2n+(2n﹣1)+(2n﹣3)+…+3+1,‎ ‎∴当n=9时,2n+(2n﹣1)+(2n﹣3)+…+1=18+17+15+13+…+3+1=18+=18+81=99,‎ 即第9个图形中点的个数是99个,‎ 故选:C.‎ ‎ ‎ ‎9.(3分)如图,函数y=﹣x2+bx+‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 c的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x=﹣1,在下列结论中,错误的是(  )‎ A.顶点坐标为(﹣1,4)‎ B.函数的解析式为y=﹣x2﹣2x+3‎ C.当x<0时,y随x的增大而增大 D.抛物线与x轴的另一个交点是(﹣3,0)‎ ‎【解答】解:将A(1,0),B(0,3)分别代入解析式得,‎ ‎,‎ 解得,,‎ 则函数解析式为y=﹣x2﹣2x+3;‎ 将x=﹣1代入解析式可得其顶点坐标为(﹣1,4);‎ 当y=0时可得,﹣x2﹣2x+3=0;‎ 解得,x1=﹣3,x2=1.‎ 可见,抛物线与x轴的另一个交点是(﹣3,0);‎ 由图可知,当x<﹣1时,y随x的增大而增大.‎ 可见,C答案错误.‎ 故选:C.‎ ‎ ‎ ‎10.(3分)如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF;③;④.其中正确的结论的个数是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.1 B.2 C.3 D.4‎ ‎【解答】解:∵,∠1=∠2,‎ ‎∴△ABE∽△ACF,∠BAC=∠EAF ‎∴△ABC∽△AEF ‎∴①②正确;‎ ‎∴,‎ ‎∴‎ ‎∴③错误 ‎∴‎ ‎∴④错误 故2个结论都是正确的.‎ 故选:B.‎ ‎ ‎ ‎ ‎ 二、填空题(本小题共6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号的横线上.) ‎ ‎11.(3分)万州长江三桥位于万州主城区,于牌楼接到跨越长江,大桥连接长江两岸的过境公路交通和城区过江交通,具有公路桥梁和城市桥梁双重功能,桥梁主线总长2120米,把数据2120米用科学记数法表示为 2.12×103 米.‎ ‎【解答】解:2120米=2.12×103米.‎ 故答案为:2.12×103.‎ ‎ ‎ ‎12.(3分)2008年北京奥运会的吉祥物是“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”等五个福娃,现将三张分别印有“欢欢”、“迎迎”、“妮妮”这三个吉祥物图案的卡片(卡片形状、大小一样,质地相同)放入一个盒中,小明从盒中任取一张,取到“贝贝”这张卡片是 不可能 事件(填“必然”或“不可能”或“随机”).‎ ‎【解答】解:盒子中没有“贝贝”所以取到“贝贝”这张卡片是不可能事件.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎13.(3分)如图,⊙O的直径AB与弦EF相交于点P,交角为45°,若PE2+PF2=8,则AB等于 4 .‎ ‎【解答】解:作OG⊥EF于G,连接OE,‎ 根据垂径定理,可设EG=FG=x,则PE=x+PG,PF=x﹣PG,‎ 又∵PE2+PF2=8,‎ ‎∴(x+PG)2+(x﹣PG)2=8,‎ 整理得2x2+2PG2=8,x2+PG2=4,‎ ‎∵交角为45°,‎ ‎∴OG=PG,‎ ‎∴OE2=OG2+EG2=4,‎ 即圆的半径是2,‎ ‎∴直径是4.‎ ‎ ‎ ‎14.(3分)如图,点P是Rt△ABC斜边AB上的任意一点(A、B两点除外),过点P作一条直线,使截得的三角形与Rt△ABC相似,这样的直线可以作 3 条.‎ ‎【解答】解:过点P可作PE∥BC或PE∥AC,可得相似三角形;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 过点P还可作PE⊥AB,可得:∠EPA=∠C=90°,∠A=∠A,‎ ‎∴△APE∽△ACB;‎ 所以共有3条.‎ ‎ ‎ ‎15.(3分)如图,长为1的线段AB在x轴上移动C(0,1)、D(0,2),则AC+BD的最小值是  .‎ ‎【解答】解:如图所示,以AB,BD为边构造平行四边形ABDE,作点C关于x轴的对称点F,连接AF,则DE⊥y轴,OF=OC=1,‎ ‎∵四边形ABDE是平行四边形,‎ ‎∴BD=AE,DE=AB=1,‎ ‎∵AB垂直平分线CF,‎ ‎∴AC=AF,‎ ‎∴AC+BD=AE+AF,‎ 如图,当点E,A,F在同一直线上时,AE+AF=EF(最短),‎ 此时,∵Rt△DEF中,DE=1,DF=2+1=3,‎ ‎∴EF===,‎ ‎∴AC+BD的最小值是.‎ 故答案为:.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎16.(3分)高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离y1、y2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有 ①②④ (把所有正确结论的序号都填在横线上).‎ ‎【解答】解:①450+240=690(千米).‎ 故A、C之间的路程为690千米是正确的;‎ ‎②450÷5﹣240÷4‎ ‎=90﹣60‎ ‎=30(千米/小时).‎ 故乙车比甲车每小时快30千米是正确的;‎ ‎③690÷(450÷5+240÷4)‎ ‎=690÷(90+60)‎ ‎=690÷150‎ ‎=4.6(小时).‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 故4.6小时两车相遇,原来的说法是错误的;‎ ‎④(450﹣240)÷(450÷5﹣240÷4)‎ ‎=210÷(90﹣60)‎ ‎=210÷30‎ ‎=7(小时),‎ ‎450÷5×7﹣450‎ ‎=630﹣450‎ ‎=180(千米).‎ 故点E的坐标为(7,180)是正确的,‎ 故其中正确的有①②④.‎ 故答案为:①②④.‎ ‎ ‎ ‎ 三、解答题(本题共9小题,共72分,解答应写出必要演算步骤、文字说明或证明过程.) ‎ ‎17.(5分)计算:﹣12018+37×3﹣5+2﹣2+(π﹣2018)0‎ ‎【解答】解:原式=﹣1+9++1=9.‎ ‎ ‎ ‎18.(6分)解方程: +﹣=1.‎ ‎【解答】解:方程两边同乘(x+2)(x﹣2)得 x﹣2+4x﹣2(x+2)=x2﹣4,‎ 整理,得x2﹣3x+2=0,‎ 解这个方程得x1=1,x2=2,‎ 经检验,x2=2是增根,舍去,‎ 所以,原方程的根是x=1.‎ ‎ ‎ ‎19.(6分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D.‎ ‎(1)点D的横坐标为 m+2 (用户含m的代数式表示).‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)当CD=时,求反比例函数所对应的函数表达式.‎ ‎【解答】解:(1)∵A(m,4),AB⊥x轴于点B,‎ ‎∴B的坐标为(m,0),‎ ‎∵将点B向右平移2个单位长度得到点C,‎ ‎∴点C的坐标为:(m+2,0),‎ ‎∵CD∥y轴,‎ ‎∴点D的横坐标为:m+2;‎ 故答案为:m+2;‎ ‎(2)∵CD∥y轴,CD=,‎ ‎∴点D的坐标为:(m+2,),‎ ‎∵A,D在反比例函数y=(x>0)的图象上,‎ ‎∴4m=(m+2),‎ 解得:m=1,‎ ‎∴点A的坐标为(1,4),‎ ‎∴k=4m=4,‎ ‎∴反比例函数的解析式为:y=.‎ ‎ ‎ ‎20.(7分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【解答】解:由题意得:BE=,AE=,‎ ‎∵AE﹣BE=AB=m米,‎ ‎∴﹣=m(米),‎ ‎∴CE=(米),‎ ‎∵DE=n米,‎ ‎∴CD=+n(米).‎ ‎∴该建筑物的高度为:(+n)米.‎ ‎ ‎ ‎21.(8分)为了了解成都市初中学生“数学核心素养”的掌握情况,教育科学院命题教师赴某校初三年级进行调 研,命题教师将随机抽取的部分学生成绩(得分为整数,满分 160 分)分为 5 组:第一组 85~100;第二组100~115;第三组 115~130;第四组 130~145;第五组 145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:‎ ‎(1)本次调查共随机抽取了该年级多少名学生?成绩为第五组的有多少名学生?‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)针对考试成绩情况,现各组分别派出1名代表(分别用 A、B、C、D、E 表示5个小组中选出来的同学),命题教师从这5名同学中随机选出两名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名同学刚好来自第一、五组的概率.‎ ‎【解答】解:(1)本次调查的学生总数为20÷40%=50(名),成绩在第5组的学生人数为50﹣(4+8+20+14)=4(人);‎ ‎(2)画树状图如下:‎ 由树状图知,共有20种等可能结果,其中所选两名同学刚好来自第一、五组的情况有2种结果,‎ 所以所选两名同学刚好来自第一、五组的概率为.‎ ‎ ‎ ‎22.(8分)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O上一动点且在第一象限内,过点P作⊙O的切线,与x、y轴分别交于点A、B.‎ ‎(1)求证:△OBP与△OPA相似;‎ ‎(2)当点P为AB中点时,求出P点坐标;‎ ‎(3)在⊙O上是否存在一点Q,使得以Q,O,A、P为顶点的四边形是平行四边形.若存在,试求出Q点坐标;若不存在,请说明理由.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【解答】解:(1)证明:‎ ‎∵AB是过点P的切线,‎ ‎∴AB⊥OP,∴∠OPB=∠OPA=90°;(1分)‎ ‎∴在Rt△OPB中,∠1+∠3=90°,‎ 又∵∠BOA=90°∴∠1+∠2=90°,‎ ‎∴∠2=∠3;(1分)‎ 在△OPB中△APO中,‎ ‎∴△OPB∽△APO.(2分)‎ ‎(2)∵OP⊥AB,且PA=PB,‎ ‎∴OA=OB,‎ ‎∴△AOB是等腰三角形,‎ ‎∴OP是∠AOB的平分线,‎ ‎∴点P到x、y轴的距离相等;(1分)‎ 又∵点P在第一象限,‎ ‎∴设点P(x,x)(x>0),‎ ‎∵圆的半径为2,‎ ‎∴OP=,解得x=或x=﹣(舍去),(2分)‎ ‎∴P点坐标是(,).(1分)‎ ‎(3)存在;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎①如图设OAPQ为平行四边形,∴PQ∥OA,OQ∥PA;‎ ‎∵AB⊥OP,∴OQ⊥OP,PQ⊥OB,‎ ‎∴∠POQ=90°,‎ ‎∵OP=OQ,‎ ‎∴△POQ是等腰直角三角形,‎ ‎∴OB是∠POQ的平分线且是边PQ上的中垂线,‎ ‎∴∠BOQ=∠BOP=45°,‎ ‎∴∠AOP=45°,‎ 设P(x,x)、Q(﹣x,x)(x>0),(2分)‎ ‎∵OP=2代入得,解得x=,‎ ‎∴Q点坐标是(﹣,);(1分)‎ ‎②如图示OPAQ为平行四边形,‎ 同理可得Q点坐标是(,﹣).(1分)‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎23.(10分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.‎ ‎(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.‎ ‎(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?‎ ‎【解答】解:(1)设鸡场垂直于墙的一边AB的长为x米,‎ 则 x(40﹣2x)=168,‎ 整理得:x2﹣20x+84=0,‎ 解得:x1=14,x2=6,‎ ‎∵墙长25m,‎ ‎∴0≤BC≤25,即0≤40﹣2x≤25,‎ 解得:7.5≤x≤20,‎ ‎∴x=14.‎ 答:鸡场垂直于墙的一边AB的长为14米.‎ ‎(2)围成养鸡场面积为S米2,‎ 则S=x(40﹣2x)‎ ‎=﹣2x2+40x 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎=﹣2(x2﹣20x)‎ ‎=﹣2(x2﹣20x+102)+2×102‎ ‎=﹣2(x﹣10)2+200,‎ ‎∵﹣2(x﹣10)2≤0,‎ ‎∴当x=10时,S有最大值200.‎ 即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值200米2.‎ ‎ ‎ ‎24.(10分)阅读下列材料,完成任务:‎ 自相似图形 定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.‎ 任务:‎ ‎(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为  ;‎ ‎(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为  ;‎ ‎(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).‎ 请从下列A、B两题中任选一条作答:我选择 A或B 题.‎ A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=  (用含b的式子表示);‎ ‎②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ (用含n,b的式子表示);‎ B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= 或 (用含b的式子表示);‎ ‎②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= b或b (用含m,n,b的式子表示).‎ ‎【解答】解:(1)∵点H是AD的中点,‎ ‎∴AH=AD,‎ ‎∵正方形AEOH∽正方形ABCD,‎ ‎∴相似比为: ==;‎ 故答案为:;‎ ‎(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,‎ ‎∴△ACD与△ABC相似的相似比为: =,‎ 故答案为:;‎ ‎(3)A、①∵矩形ABEF∽矩形FECD,‎ ‎∴AF:AB=AB:AD,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 即a:b=b:a,‎ ‎∴a=b;‎ 故答案为:‎ ‎②每个小矩形都是全等的,则其边长为b和a,‎ 则b: a=a:b,‎ ‎∴a=b;‎ 故答案为:‎ B、①如图2,‎ 由①②可知纵向2块矩形全等,横向3块矩形也全等,‎ ‎∴DN=b,‎ Ⅰ、当FM是矩形DFMN的长时,‎ ‎∵矩形FMND∽矩形ABCD,‎ ‎∴FD:DN=AD:AB,‎ 即FD: b=a:b,‎ 解得FD=a,‎ ‎∴AF=a﹣a=a,‎ ‎∴AG===a,‎ ‎∵矩形GABH∽矩形ABCD,‎ ‎∴AG:AB=AB:AD 即a:b=b:a 得:a=b;‎ Ⅱ、当DF是矩形DFMN的长时,‎ ‎∵矩形DFMN∽矩形ABCD,‎ ‎∴FD:DN=AB:AD 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 即FD: b=b:a 解得FD=,‎ ‎∴AF=a﹣=,‎ ‎∴AG==,‎ ‎∵矩形GABH∽矩形ABCD,‎ ‎∴AG:AB=AB:AD 即:b=b:a,‎ 得:a=b;‎ 故答案为:或;‎ ‎②如图3,‎ 由①②可知纵向m块矩形全等,横向n块矩形也全等,‎ ‎∴DN=b,‎ Ⅰ、当FM是矩形DFMN的长时,‎ ‎∵矩形FMND∽矩形ABCD,‎ ‎∴FD:DN=AD:AB,‎ 即FD: b=a:b,‎ 解得FD=a,‎ ‎∴AF=a﹣a,‎ ‎∴AG===a,‎ ‎∵矩形GABH∽矩形ABCD,‎ ‎∴AG:AB=AB:AD 即a:b=b:a 得:a=b;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 Ⅱ、当DF是矩形DFMN的长时,‎ ‎∵矩形DFMN∽矩形ABCD,‎ ‎∴FD:DN=AB:AD 即FD: b=b:a 解得FD=,‎ ‎∴AF=a﹣,‎ ‎∴AG==,‎ ‎∵矩形GABH∽矩形ABCD,‎ ‎∴AG:AB=AB:AD 即:b=b:a,‎ 得:a=b;‎ 故答案为: b或b.‎ ‎ ‎ ‎25.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.‎ ‎(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);‎ ‎(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;‎ ‎(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),‎ ‎∴a+a+b=0,即b=﹣2a,‎ ‎∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,‎ ‎∴抛物线顶点D的坐标为(﹣,﹣);‎ ‎(2)∵直线y=2x+m经过点M(1,0),‎ ‎∴0=2×1+m,解得m=﹣2,‎ ‎∴y=2x﹣2,‎ 则,‎ 得ax2+(a﹣2)x﹣2a+2=0,‎ ‎∴(x﹣1)(ax+2a﹣2)=0,‎ 解得x=1或x=﹣2,‎ ‎∴N点坐标为(﹣2,﹣6),‎ ‎∵a<b,即a<﹣2a,‎ ‎∴a<0,‎ 如图1,设抛物线对称轴交直线于点E,‎ ‎∵抛物线对称轴为x=﹣=﹣,‎ ‎∴E(﹣,﹣3),‎ ‎∵M(1,0),N(﹣2,﹣6),‎ 设△DMN的面积为S,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,‎ ‎(3)当a=﹣1时,‎ 抛物线的解析式为:y=﹣x2﹣x+2=﹣(x﹣)2+,‎ 有,‎ ‎﹣x2﹣x+2=﹣2x,‎ 解得:x1=2,x2=﹣1,‎ ‎∴G(﹣1,2),‎ ‎∵点G、H关于原点对称,‎ ‎∴H(1,﹣2),‎ 设直线GH平移后的解析式为:y=﹣2x+t,‎ ‎﹣x2﹣x+2=﹣2x+t,‎ x2﹣x﹣2+t=0,‎ ‎△=1﹣4(t﹣2)=0,‎ t=,‎ 当点H平移后落在抛物线上时,坐标为(1,0),‎ 把(1,0)代入y=﹣2x+t,‎ t=2,‎ ‎∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料