由莲山课件提供http://www.5ykj.com/ 资源全部免费
跟踪强化训练(十三)
一、选择题
1.(2017·武汉模拟)已知角α的终边上一点的坐标为,则角α的最小正值为( )
A. B. C. D.
[解析] 因为sin=sin=sin=,cos=cos=-cos=-,所以点在第四象限.又因为tanα==-=tan=tan,所以角α的最小正值为.故选B.
[答案] B
2.(2017·新疆石河子模拟)已知2sinθ=1+cosθ,则tanθ=( )
A.-或0 B.或0 C.- D.
[解析] 把2sinθ=1+cosθ两边平方,整理得,5cos2θ+2cosθ-3=0,分解因式得(5cosθ-3)(cosθ+1)=0,∴cosθ=-1或.当cosθ=-1时,θ=2kπ+π,k∈Z,∴tanθ=0;当cosθ=时,sinθ=,∴tanθ==,故选B.
[答案] B
3.(2017·太原模拟)若将函数y=2sin2x的图象向左平移
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
个单位长度,则平移后图象的对称轴为( )
A.x=-(k∈Z) B.x=+(k∈Z)
C.x=-(k∈Z) D.x=+(k∈Z)
[解析] 将y=2sin2x的图象向左平移个单位长度后对应的函数解析式为y=2sin=2sin.由2x+=kπ+(k∈Z),可得x=+(k∈Z).故选B.
[答案] B
4.(2017·沈阳模拟)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )
A.,k∈Z
B.,k∈Z
C.,k∈Z
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D.,k∈Z
[解析] 观察题中的函数图象,得T=2×=2=,从而ω=π,所以f(x)=cos(πx+φ).将点的坐标代入上式,得0=cos.结合图象,得+φ=+2kπ(k∈Z).取k=0,得φ=.所以f(x)=cos.由2kπ