由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017-2018学年湖北省省广水市马坪镇七年级(下)
第二次月考数学试卷
一、选择题
1.(3分)下列说法正确的是( )
A.若两个角相等,则这两个角是对顶角
B.若两个角是对顶角,则这两个角是相等
C.若两个角不是对顶角,则这两个角不相等
D.所有的对顶角相等
2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加( )
A.4cm2 B.(2R+4)cm2 C.(4R+4)cm2 D.以上都不对
3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是( )
A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥c
C.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c
4.(3分)下列计算正确的是( )
A.(a4)3=a7 B.a8÷a4=a2 C.(ab)3=a3b3 D.(a+b)2=a2+b2
5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是( )
A.29°30′ B.30°30′ C.31°30′ D.59°30′
6.(3分)下列式子正确的是( )
A.a2﹣4b2=(a+2b)(a﹣2b) B.(a﹣b)2=a2﹣b2
C.(a+b)2=a2+b2 D.(x+3y)(x﹣3y)=x2﹣3y2
7.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是( )
A. B. C.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D.
8.(3分)计算的结果是( )
A.﹣ B. C.﹣ D.
9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A.平行 B.垂直 C.平行或垂直 D.无法确定
10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是( )
A.4 B.2 C.8 D.6
二、填空题
11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为 米(精确到米).
12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为 .
13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP 5cm(填写<或>或=或≤或≥)
14.(3分)若x2﹣16x+m2是一个完全平方式,则m= ;若m﹣=9,则m2+= .
15.(3分)若一个角是34°,则这个角的余角是 °.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:
第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,
第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,
第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,
第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.
若∠En=1度,那∠BEC等于 度
三、解答题
17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.
18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?
以下是小刚不完整的解答,请帮她补充完整.
解:由已知,根据
得∠1=∠A=67°
所以,∠CBD=23°+67°= °;
根据
当∠ECB+∠CBD= °时,可得CE∥AB.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以∠ECB= °
此时CE与BC的位置关系为 .
19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:
(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;
(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.
20.如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.
(1)请在图中找出与∠AOC相等的角,并说明理由;
(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
21.问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义证明完全平方公式.
证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:
这个图形的面积可以表示成:
(a+b)2或 a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
这就验证了两数和的完全平方公式.
类比解决:
(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)
问题提出:如何利用图形几何意义的方法证明:13+23=32?
如图2,A表示1个1×1的正方形,即:1×1×1=13
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
尝试解决:
(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33= .(要求写出结论并构造图形写出推证过程).
(3)问题拓广:
请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
.(直接写出结论即可,不必写出解题过程)
22.计算:
(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2
(2)a•a3•(﹣a2)3.
23.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;
(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;
(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求
∠EKD的度数.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
参考答案与试题解析
一、选择题
1.(3分)下列说法正确的是( )
A.若两个角相等,则这两个角是对顶角
B.若两个角是对顶角,则这两个角是相等
C.若两个角不是对顶角,则这两个角不相等
D.所有的对顶角相等
【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;
∴选项A、C错误;
根据对顶角的性质:对顶角相等;
∴选项D错误;
故选:B.
2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加( )
A.4cm2 B.(2R+4)cm2 C.(4R+4)cm2 D.以上都不对
【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,
=π(R+2﹣R)(R+2+R),
=4π(R+1),
∴它的面积增加4π(R+1)cm2.
故选:D.
3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是( )
A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥c
C.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c
【解答】解:A、∵a∥b,b∥c,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴a∥c,故本选项符合题意;
B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合题意;
C、当a∥b,b⊥c时,a⊥c,故本选项不符合题意;
D、当a∥b,b∥c时,a∥c,故本选项不符合题意;
故选:A.
4.(3分)下列计算正确的是( )
A.(a4)3=a7 B.a8÷a4=a2 C.(ab)3=a3b3 D.(a+b)2=a2+b2
【解答】解:∵(a4)3=a12,
∴选项A不符合题意;
∵a8÷a4=a4,
∴选项B不符合题意;
∵(ab)3=a3b3,
∴选项C符合题意;
∵(a+b)2=a2+b2+2ab,
∴选项D不符合题意.
故选:C.
5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是( )
A.29°30′ B.30°30′ C.31°30′ D.59°30′
【解答】解:∵∠α与∠β互为补角,∠α=120°30′,
∴∠β=180°﹣120°30′=59°30′,
∴∠β的余角=90°﹣59°30′=30°30′.
故选:B.
6.(3分)下列式子正确的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.a2﹣4b2=(a+2b)(a﹣2b) B.(a﹣b)2=a2﹣b2
C.(a+b)2=a2+b2 D.(x+3y)(x﹣3y)=x2﹣3y2
【解答】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解正确;
B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;
C、(a+b)2=a2+2ab+b2,故原题计算错误;
D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;
故选:A.
7.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是( )
A. B. C. D.
【解答】解:线段AD的长表示点A到直线BC距离的是图D,
故选:D.
8.(3分)计算的结果是( )
A.﹣ B. C.﹣ D.
【解答】解:原式=(﹣×1.5)2016×(﹣1.5)=﹣1.5=﹣,
故选:A.
9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.平行 B.垂直 C.平行或垂直 D.无法确定
【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,
∴l2⊥l4,l4⊥l6,l6⊥l8,
∴l2⊥l8.
∵l1⊥l2,
∴l1∥l8.
故选:A.
10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是( )
A.4 B.2 C.8 D.6
【解答】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1
=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1
=(24﹣1)×(24+1)×…×(232+1)+1
=(232﹣1)×(232+1)+1
=264﹣1+1
=264,
因为21=2,22=4,23=8,24=16,25=32,
所以底数为2的正整数次幂的个位数是2、4、8、6的循环,
所以264的个位数是6.
故选:D.
二、填空题
11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为 106 米(精确到米).
【解答】解:在图形上测量知B,C两楼之间的距离为106米.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为 36°或37° .
【解答】解:如图,过E作EG∥AB,
∵AB∥CD,
∴GE∥CD,
∴∠BAE=∠AEG,∠DFE=∠GEF,
∴∠AEF=∠BAE+∠DFE,
设∠CEF=x,则∠AEC=2x,
∴x+2x=∠BAE+60°,
∴∠BAE=3x﹣60°,
又∵6°<∠BAE<15°,
∴6°<3x﹣60°<15°,
解得22°<x<25°,
又∵∠DFE是△CEF的外角,∠C的度数为整数,
∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,
故答案为:36°或37°.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP ≥ 5cm(填写<或>或=或≤或≥)
【解答】解:根据题意,得A到直线a的垂线段的长是5cm,
由垂线段最短,得AP≥5cm.
故填:≥.
14.(3分)若x2﹣16x+m2是一个完全平方式,则m= ±8 ;若m﹣=9,则m2+= 83 .
【解答】解:∵x2﹣16x+m2是完全平方式,
∴16x=2×8•x,
∴m2=82,
解得m=±8;
∵m﹣=9,
∴(m﹣)2=m2﹣2+=81,
解得m2+=81+2=83.
15.(3分)若一个角是34°,则这个角的余角是 56 °.
【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,
故答案为:56.
16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:
第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,
第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,
第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,
第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.
若∠En=1度,那∠BEC等于 2n 度
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:如图①,过E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠B=∠1,∠C=∠2,
∵∠BEC=∠1+∠2,
∴∠BEC=∠ABE+∠DCE;
如图②,∵∠ABE和∠DCE的平分线交点为E1,
∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.
∵∠ABE1和∠DCE1的平分线交点为E2,
∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;
如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,
∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;
…
以此类推,∠En=∠BEC.
∴当∠En=1度时,∠BEC等于2n度.
故答案为:2n .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题
17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.
【解答】解:(1)1+3+32+33+34+35+36
=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)
=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2
=(37﹣1)÷2
=2186÷2
=1093;
(2)1+a+a2+a3+…+a2013(a≠0且a≠1)
═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)
=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)
=(a2014﹣1)÷(a﹣1)
=.
18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?
以下是小刚不完整的解答,请帮她补充完整.
解:由已知,根据 两直线平行,同位角相等
得∠1=∠A=67°
所以,∠CBD=23°+67°= 90 °;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
根据 同旁内角互补,两直线平行
当∠ECB+∠CBD= 180 °时,可得CE∥AB.
所以∠ECB= 90 °
此时CE与BC的位置关系为 垂直 .
【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,
所以,∠CBD=23°+67°=90°,
根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,
所以∠ECB=90°,
此时CE与BC的位置关系为垂直,
故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.
19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:
(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;
(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,
此时,每个小正方形的对角线长为,每个转发装置都能完全覆盖一个小正方形区域,
故安装4个这种装置可以达到预设的要求;
(2)(画图正确给1分)
将原正方形分割成如图2中的3个矩形,
使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,
则AE=,,
∴OD=,
即如此安装三个这个转发装置,也能达到预设要求.
20.如图,已知两条射线OM∥
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.
(1)请在图中找出与∠AOC相等的角,并说明理由;
(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.
【解答】解:(1)∵OM∥CN,
∴∠AOC=180°﹣∠C=180°﹣108°=72°,
∠ABC=180°﹣∠OAB=180°﹣108°=72°,
又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,
∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;
(2)∵OM∥CN,
∴∠OBC=∠AOB,∠OFC=∠AOF,
∵OB平分∠AOF,
∴∠AOF=2∠AOB,
∴∠OFC=2∠OBC,
∴∠OBC:∠OFC=;
(3)设∠OBA=x,则∠OEC=2x,
在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,
在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,
∵OB平分∠AOF,OE平分∠COF,
∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴72°﹣x+72°﹣2x=36°,
解得x=36°,
即∠OBA=36°,
此时,∠OEC=2×36°=72°,
∠COE=72°﹣2×36°=0°,
点C、E重合,
所以,不存在.
21.问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义证明完全平方公式.
证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:
这个图形的面积可以表示成:
(a+b)2或 a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
这就验证了两数和的完全平方公式.
类比解决:
(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)
问题提出:如何利用图形几何意义的方法证明:13+23=32?
如图2,A表示1个1×1的正方形,即:1×1×1=13
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
尝试解决:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33= 62 .(要求写出结论并构造图形写出推证过程).
(3)问题拓广:
请用上面的表示几何图形面积的方法探究:13+23+33+…+n3= [n(n+1)]2 .(直接写出结论即可,不必写出解题过程)
【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,
右图的阴影部分的面积是(a+b)(a﹣b),
∴a2﹣b2=(a+b)(a﹣b),
这就验证了平方差公式;
(2)如图,A表示1个1×1的正方形,即1×1×1=13;
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,
因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;
G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;
而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,
由此可得:13+23+33=(1+2+3)2=62;
故答案为:62;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)由上面表示几何图形的面积探究可知,13+23+33+…+n3=(1+2+3+…+n)2,
又∵1+2+3+…+n=n(n+1),
∴13+23+33+…+n3=[n(n+1)]2.
故答案为:[n(n+1)]2.
22.计算:
(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2
(2)a•a3•(﹣a2)3.
【解答】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2
=4+1+4
=9;
(2)a•a3•(﹣a2)3
=a•a3•(﹣a6)
=﹣a10.
23.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;
(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;
(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求
∠EKD的度数.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)∠AED=∠EAF+∠EDG.
理由:如图1,过E作EH∥AB,
∵AB∥CD,
∴AB∥CD∥EH,
∴∠EAF=∠AEH,∠EDG=∠DEH,
∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;
(2)证明:如图2,设CD与AE交于点H,
∵AB∥CD,
∴∠EAF=∠EHG,
∵∠EHG是△DEH的外角,
∴∠EHG=∠AED+∠EDG,
∴∠EAF=∠AED+∠EDG;
(3)∵AI平分∠BAE,
∴可设∠EAI=∠BAI=α,则∠BAE=2α,
∵AB∥CD,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠CHE=∠BAE=2α,
∵∠AED=20°,∠I=30°,∠DKE=∠AKI,
∴∠EDI=α+30°﹣20°=α+10°,
又∵∠EDI:∠CDI=2:1,
∴∠CDI=∠EDK=α+5°,
∵∠CHE是△DEH的外角,
∴∠CHE=∠EDH+∠DEK,
即2α=α+5°+α+10°+20°,
解得α=70°,
∴∠EDK=70°+10°=80°,
∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.
由莲山课件提供http://www.5ykj.com/ 资源全部免费