由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年河北武安市西土山乡中考数学模拟试题
一、选择题(本题共16个小题,共42分)
1.(3分)在实数﹣,0.21,,,,0.20202中,无理数的个数为( )
A.1 B.2 C.3 D.4
2.(3分)有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )
A.5个 B.4个 C.3个 D.2个
3.(3分)下列算式中,结果等于x6的是( )
A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
4.(3分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A.76° B.78° C.80° D.82°
5.(3分)一组样本容量为5的数据中,其中a1=2.5,a2=3.5,a3=4,a4与a5的和为5,当a4、a5依次取多少时,这组样本方差有最小值( )
A.1.5,3.5 B.1,4 C.2.5,2.5 D.2,3
6.(3分)如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )
A.右转80° B.左转80° C.右转100° D.左转100°
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
7.(3分)下列方程中,没有实数根的是( )
A.3x+2=0 B.2x+3y=5 C.x2+x﹣1=0 D.x2+x+1=0
8.(3分)如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是( )
A.4:9 B.2:5 C.2:3 D.:
9.(3分)当a,b互为相反数时,代数式a2+ab﹣2的值为( )
A.2 B.0 C.﹣2 D.﹣1
10.(3分)如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2009的点与圆周上表示数字( )的点重合.
A.0 B.1 C.2 D.3
11.(2分)为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )
A. B.
C. D.
12.(2分)如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B. C. D.2
13.(2分)不等式组的解集是( )
A.x> B.x>﹣5 C.<x<﹣5 D.x≥﹣5
14.(2分)画正三角形ABC(如图)水平放置的直观图△A′B′C′,正确的是( )
A. B. C. D.
15.(2分)如图1,已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作,将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转,再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…,如图2,是六次旋转的位置图象,图中虚线是点M的运动轨迹,则在第四次旋转的过程中,点B,M间的距离可能是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.1.4 B.1.1 C.0.8 D.0.6
16.(2分)如图,函数y=(x<0)的图象与直线y=x+m相交于点A和点B.过点A作AE⊥x轴于点E,过点B作BF⊥y轴于点F,P为线段AB上的一点,连接PE、PF.若△PAE和△PBF的面积相等,且xP=﹣,xA﹣xB=﹣3,则k的值是( )
A.﹣5 B. C.﹣2 D.﹣1
二、填空题(本大题共3小题,共10分)
17.(3分)计算:4cos60°﹣+(3﹣π)0= .
18.(3分)化简的结果为 .
19.(4分)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD的面积是6.
(1)格点△PMN的面积是 .
(2)格点四边形EFGH的面积是 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题(本大题共7小题,共68分)
20.(9分).
21.(9分)如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.
(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;
(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为 ;
(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.
22.(9分)已知n边形的对角线共有条(n是不小于3的整数);
(1)五边形的对角线共有 条;
(2)若n边形的对角线共有35条,求边数n;
(3)若n边形的边数增加1,对角线总数增加9,求边数n.
23.(9分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
24.(10分)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:
(1)写出兄吃饺子数y与弟吃饺子数x之间的函数关系式(不要求写xy的取值范围): ;
(2)虽然当弟吃的饺子个数增多时,兄吃的饺子数(y)在减少,但y与x是成反例吗?答: (填“是”或“不是”).
25.(10分)如图,AB是⊙O的直径, =,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
(1)求∠BAC的度数;
(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;
(3)在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26.(12分)已知抛物线y=x2+2px+2p﹣2的顶点为M,
(1)求证抛物线与x轴必有两个不同交点;
(2)设抛物线与x轴的交点分别为A,B,求实数p的值使△ABM面积达到最小.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
参考答案与试题解析
一、选择题(本题共16个小题,共42分)
1.(3分)在实数﹣,0.21,,,,0.20202中,无理数的个数为( )
A.1 B.2 C.3 D.4
【解答】解:在实数﹣,0.21,,,,0.20202中,
根据无理数的定义可得其中无理数有﹣,,三个.
故选C.
2.(3分)有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )
A.5个 B.4个 C.3个 D.2个
【解答】解:矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;
等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
平行四边形不是轴对称图形,是中心对称图形,不符合题意.
共3个既是轴对称图形又是中心对称图形.
故选C.
3.(3分)下列算式中,结果等于x6的是( )
A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
【解答】解:A、x2•x2•x2=x6,故选项A符合题意;
B、x2+x2+x2=3x2,故选项B不符合题意;
C、x2•x3=x5,故选项C不符合题意;
D、x4+x2,无法计算,故选项D不符合题意.
故选:A.
4.(3分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A.76° B.78° C.80° D.82°
【解答】解:如图,分别过K、H作AB的平行线MN和RS,
∵AB∥CD,
∴AB∥CD∥RS∥MN,
∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,
∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),
∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,
∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,
又∠BKC﹣∠BHC=27°,
∴∠BHC=∠BKC﹣27°,
∴∠BKC=180°﹣2(∠BKC﹣27°),
∴∠BKC=78°,
故选:B.
5.(3分)一组样本容量为5的数据中,其中a1=2.5,a2=3.5,a3=4,a4与a5的和为5,当a4、a5依次取多少时,这组样本方差有最小值( )
A.1.5,3.5 B.1,4 C.2.5,2.5 D.2,3
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解: =(2.5+3.5+4+5)÷5=3,
设a4=x,则a5=5﹣x,S2= [(2.5﹣3)2+(3.5﹣3)2+(4﹣3)2+(x﹣3)2+(5﹣x﹣3)2]=(x﹣2.5)2+,
当x=2.5时,方差有最小值,∴a4=2.5,则a5=2.5.
故选C.
6.(3分)如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )
A.右转80° B.左转80° C.右转100° D.左转100°
【解答】解:60°+20°=80°.
由北偏西20°转向北偏东60°,需要向右转.
故选:A.
7.(3分)下列方程中,没有实数根的是( )
A.3x+2=0 B.2x+3y=5 C.x2+x﹣1=0 D.x2+x+1=0
【解答】解;A、3x+2=0,解得x=﹣,
B、2x+3y=5是不定方程,有无穷组解,
C、∵△=b2﹣4ac=5>0
∴方程x2+x﹣1=0有实数根,
D、∵△=b2﹣4ac=12﹣4×1×1=﹣3<0
∴方程x2+x+1=0没有实数根.
故本题选D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
8.(3分)如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是( )
A.4:9 B.2:5 C.2:3 D.:
【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,
∴DA:D′A′=OA:OA′=2:3,
∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,
故选:A.
9.(3分)当a,b互为相反数时,代数式a2+ab﹣2的值为( )
A.2 B.0 C.﹣2 D.﹣1
【解答】解:由题意得到a+b=0,
则原式=a(a+b)﹣2=0﹣2=﹣2,
故选C
10.(3分)如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2009的点与圆周上表示数字( )的点重合.
A.0 B.1 C.2 D.3
【解答】解:∵﹣1﹣(﹣2009)=2008,
2008÷4=502,
∴数轴上表示数﹣2009的点与圆周上起点处表示的数字重合,即与0重合.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故选A.
11.(2分)为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )
A. B.
C. D.
【解答】解:原计划植树用的时间应该表示为,而实际用的时间为.那么方程可表示为.
故选A.
12.(2分)如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )
A. B. C. D.2
【解答】解:如图,连接AC、BD、OF,,
设⊙O的半径是r,
则OF=r,
∵AO是∠EAF的平分线,
∴∠OAF=60°÷2=30°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵OA=OF,
∴∠OFA=∠OAF=30°,
∴∠COF=30°+30°=60°,
∴FI=r•sin60°=,
∴EF=,
∵AO=2OI,
∴OI=,CI=r﹣=,
∴,
∴,
∴=,
即则的值是.
故选:C.
13.(2分)不等式组的解集是( )
A.x> B.x>﹣5 C.<x<﹣5 D.x≥﹣5
【解答】解:由(1)得:x≥﹣5,由(2)得:x>,所以x≥﹣5.故选D.
14.(2分)画正三角形ABC(如图)水平放置的直观图△A′B′C′,正确的是( )
A. B. C.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D.
【解答】解:根据画正三角形的直观图的方法可知此题选D.
故选D.
15.(2分)如图1,已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作,将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转,再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…,如图2,是六次旋转的位置图象,图中虚线是点M的运动轨迹,则在第四次旋转的过程中,点B,M间的距离可能是( )
A.1.4 B.1.1 C.0.8 D.0.6
【解答】解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,
观察图象可知点B,M间的距离大于等于2﹣小于等于1,
故选D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
16.(2分)如图,函数y=(x<0)的图象与直线y=x+m相交于点A和点B.过点A作AE⊥x轴于点E,过点B作BF⊥y轴于点F,P为线段AB上的一点,连接PE、PF.若△PAE和△PBF的面积相等,且xP=﹣,xA﹣xB=﹣3,则k的值是( )
A.﹣5 B. C.﹣2 D.﹣1
【解答】解:由题意可得:xA、xB是方程=x+m即x2+2mx﹣2k=0的两根,
∴xA+xB=﹣2m,xA•xB=﹣2k.
∵点A、B在反比例函数y=的图象上,
∴xA•yA=xB•yB=k.
∵S△PAE=S△PBF,
∴yA(xP﹣xA)=(﹣xB)(yB﹣yP),
整理得xP•yA=xB•yP,
∴﹣=xB•yP,
∴﹣k=xA•xB•yP=﹣2kyP,.
∵k≠0,
∴yP=,
∴×(﹣)+m=,
∴m=.
∵xA﹣xB=﹣3,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴(xA﹣xB)2=(xA+xB)2﹣4xA•xB=(﹣2×)2+8k=9,
∴k=﹣2.
故选C.
二、填空题(本大题共3小题,共10分)
17.(3分)计算:4cos60°﹣+(3﹣π)0= 1 .
【解答】解:原式=4×﹣2+1=2﹣2+1=1,
故答案为:1
18.(3分)化简的结果为 x+1 .
【解答】解:原式=•=x+1,
故答案为:x+1
19.(4分)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD的面积是6.
(1)格点△PMN的面积是 6 .
(2)格点四边形EFGH的面积是 28 .
【解答】解:(1)如图,S△PMN=•S平行四边形MNEF=×12=6,
故答案为6.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)S四边形EFGH=S平行四边形LJKT﹣S△LEH﹣S△HTG﹣S△FKG﹣S△EFJ
=60﹣2﹣9﹣6﹣15=28,
故答案为28
三、解答题(本大题共7小题,共68分)
20.(9分).
【解答】解:原式=[3﹣(2﹣)][3+(2﹣)]
=32﹣(2﹣)2
=9﹣(8+3﹣4)
=9﹣8﹣3+4
=4﹣2.
21.(9分)如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.
(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;
(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为 AD=BE+DE ;
(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】(1)证明:如图①,延长DA到F,使DF=DE,
∵CD⊥AE,
∴CE=CF,
∴∠DCE=∠DCF=∠PCQ=45°,
∴∠ACD+∠ACF=∠DCF=45°,
又∵∠ACB=90°,∠PCQ=45°,
∴∠ACD+∠BCE=90°﹣45°=45°,
∴∠ACF=∠BCE,
∵在△ACF和△BCE中,
,
∴△ACF≌△BCE(SAS),
∴AF=BE,
∴AD+BE=AD+AF=DF=DE,
即AD+BE=DE;
(2)解:如图②,在AD上截取DF=DE,
∵CD⊥AE,
∴CE=CF,
∴∠DCE=∠DCF=∠PCQ=45°,
∴∠ECF=∠DCE+∠DCF=90°,
∴∠BCE+∠BCF=∠ECF=90°,
又∵∠ACB=90°,
∴∠ACF+∠BCF=90°,
∴∠ACF=∠BCE,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵在△ACF和△BCE中,
,
∴△ACF≌△BCE(SAS),
∴AF=BE,
∴AD=AF+DF=BE+DE,
即AD=BE+DE;
故答案为:AD=BE+DE.
(3)∵∠DCE=∠DCF=∠PCQ=45°,
∴∠ECF=45°+45°=90°,
∴△ECF是等腰直角三角形,
∴CD=DF=DE=6,
∵S△BCE=2S△ACD,
∴AF=2AD,
∴AD=×6=2,
∴AE=AD+DE=2+6=8.
22.(9分)已知n边形的对角线共有条(n是不小于3的整数);
(1)五边形的对角线共有 5 条;
(2)若n边形的对角线共有35条,求边数n;
(3)若n边形的边数增加1,对角线总数增加9,求边数n.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)当n=5时, ==5,
故答案为:5.
(2)=35,
整理得:n2﹣3n﹣70=0,
解得:n=10或n=﹣7(舍去),
所以边数n=10.
(3)根据题意得:﹣=9,
解得:n=10.
所以边数n=10.
23.(9分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
【解答】解:(1)10÷20%=50,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以本次抽样调查共抽取了50名学生;
(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);
补全条形图如图所示:
(3)700×=56,
所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;
(4)画树状图为:
共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
所以抽取的两人恰好都是男生的概率==.
24.(10分)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:
(1)写出兄吃饺子数y与弟吃饺子数x之间的函数关系式(不要求写xy的取值范围): y=30﹣x ;
(2)虽然当弟吃的饺子个数增多时,兄吃的饺子数(y)在减少,但y与x是成反例吗?答: 不是 (填“是”或“不是”).
【解答】解:(1)观察表格可知,x+y=30即:y=30﹣x;
(2)x与y的乘积不是定值,故y与x不是成反例.
故答案为:(1)y=30﹣x;(2)不是.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25.(10分)如图,AB是⊙O的直径, =,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
(1)求∠BAC的度数;
(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;
(3)在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
【解答】解:(1)如图1中,连接BC.
∵=,
∴BC=CA,
∵AB是直径,
∴∠ACB=90°,
∴∠BAC=∠CBA=45°.
(2)解:∵=,
∴∠CDB=∠CDP=45°,CB=CA,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴CD平分∠BDP,又∵CD⊥BP,
∴∠DEB=∠DEP=90°,∵DE=DE,
∴△DEB≌△DEP,
∴BE=EP,
即CD是PB的中垂线,
∴CP=CB=CA.
(3)①(Ⅰ)如图2,当 B在PA的中垂线上,且P在右时,∠ACD=15°;
理由:连接BD、OC.作BG⊥PC于G.则四边形OBGC是正方形,
∵BG=OC=OB=CG,
∵BA=BA,
∴PB=2BG,
∴∠BPG=30°,
∵AB∥PC,
∴∠ABP=30°,
∵BD垂直平分AP,
∴∠ABD=∠ABP=15°,
∴∠ACD=15°
(Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;
理由:作BG⊥CP于G.
同法可证∠BPG=30°,可得∠APB=∠BAP=∠APC=15°,
∴∠ABD=75°,
∵∠ACD+∠ABD=180°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠ACD=105°;
(Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;
理由:作AH⊥PC于H,连接BC.
同法可证∠APH=30°,可得∠DAC=75°,∠D=∠ABC=45°,
∴∠ACD=60°;
(Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°
理由:作AH⊥PC于H.
同法可证:∠APH=30°,可得∠ADC=45°,∠DAC=60°﹣45°=15°,
∴∠ACD=120°.
②如图6中,作EK⊥PC于K.
∵EK=CK=3,
∴EC=3,
∵AC=6,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AE=EC,
∵AB∥PC,
∴∠BAE=∠PCE,∵∠AEB=∠PEC,
∴△ABE≌△CPE,
∴PC=AB=CD,
∴△PCD是等腰直角三角形,可得四边形ADBC是正方形,
∴S△BDE=•S正方形ADBC=36.
如图7中,连接OC,作BG⊥CP于G,EK⊥PC于K.
由题意CK=EK=3,PK=1,PG=2,
由△AOQ∽△PCQ,可得QC=,
PQ2=,
由△AOQ∽△ADB,可得S△ABD=,
∴S△PBD=S△ABP﹣S△ABD=,
∴S△BDE=•S△PBD=
综上所,满足条件的△BDE的面积为36或.
26.(12分)已知抛物线y=x2+2px+2p﹣2的顶点为M,
(1)求证抛物线与x轴必有两个不同交点;
(2)设抛物线与x轴的交点分别为A,B,求实数p的值使△
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
ABM面积达到最小.
【解答】解:(1)∵△=4p2﹣8p+8=4(p﹣1)2+4>0,
∴抛物线与x轴必有两个不同交点.
(2)设A(x1,0),B(x2,0),
则|AB|2=|x2﹣x1|2=(x1+x2)2﹣4x1x2=4p2﹣8p+8=4(p﹣1)2+4,
∴|AB|=2.
又设顶点M(a,b),由y=(x+p)2﹣(p﹣1)2﹣1.
得b=﹣(p﹣1)2﹣1.
当p=1时,|b|及|AB|均取最小,此时S△ABM=|AB||b|取最小值1.
由莲山课件提供http://www.5ykj.com/ 资源全部免费