由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年天津市蓟州区第三联合学区中考数学模拟试卷
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(3分)计算(﹣5)+3的结果等于( )
A.2 B.﹣2 C.﹣8 D.8
2.(3分)tan30°的值为( )
A. B. C. D.
3.(3分)下列交通标志中,是中心对称图形的是( )
A. B. C. D.
4.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为( )
A. 647×108 B.6.47×109 C.6.47×1010 D.6.47×1011
5.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是( )
A. B. C. D.
6.(3分)估计的值是( )
A.在3与4之间 B.在4与5之间 C.在5与6之间 D.在6与7之间
7.(3分)一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到红球的概率是( )
A. B. C. D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
8.(3分)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=( )
A.2:3 B.4:9 C.2:5 D.4:25
9.(3分)函数y=﹣的图象经过点A(x1,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是( )
A.y1<y2<0 B.y2<y1<0 C.y1>y2>0 D.y2>y1>0
10.(3分)化简+的结果为( )
A.1 B.﹣1 C. D.
11.(3分)如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为( )
A. B.4 C.4.5 D.5
12.(3分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有两个相等的实数根;
④抛物线与x轴的另一个交点是(﹣1,0);
⑤当1<x<4时,有y2<y1,
其中正确的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.①②③ B.①③④ C.①③⑤ D.②④⑤
二、填空题(本大题共6小题,每小题3分,共18分)
13.(3分)计算﹣6的结果是 .
14.(3分)分解因式:m2n﹣4mn﹣4n= .
15.(3分)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 .
16.(3分)某一次函数的图象经过点(﹣2,1),且y轴随x的增大而减小,则这个函数的表达式可能是 .(只写一个即可)
17.(3分)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是 .
18.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.将线段AB绕点B顺时针旋转90°,得线段A′B,点A的对应点为A′,连接AA′交线段BC于点D.
(Ⅰ)作出旋转后的图形;
(Ⅱ) = .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程)
19.(8分)解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在数轴上表示出来.
(Ⅳ)原不等式组的解集为 .
20.(8分)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)
请根据图中提供的信息,回答下列问题:
(1)a= %,并写出该扇形所对圆心角的度数为 ,请补全条形图.
(2)在这次抽样调查中,众数和中位数分别是多少?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?
21.(10分)已知BC是⊙O的直径,AD是⊙O的切线,切点为A,AD交CB的延长线于点D,连接AB,AO.
(Ⅰ)如图①,求证:∠OAC=∠DAB;
(Ⅱ)如图②,AD=AC,若E是⊙O上一点,求∠E的大小.
22.(10分)如图,大楼AB高16m,远处有一塔CD,某人在楼底B处测得塔顶C的仰角为38.5°,在楼顶A处测得塔顶的仰角为22°,求塔高CD的高及大楼与塔之间的距离BC的长.
(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).
23.(10分)某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).
(1)分别写出两种优惠方案中y与x之间的关系式;
方案一:y1= ;方案二:y2= .
(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?
(3)学校计划用540元钱购买这两种奖品,最多可以买到
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
个文具盒(直接回答即可).
24.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
25.(10分)如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.
(1)求抛物线的函数表达式;
(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年天津市蓟州区第三联合学区中考数学模拟试卷
参考答案与试题解析
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(3分)计算(﹣5)+3的结果等于( )
A.2 B.﹣2 C.﹣8 D.8
【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.
故选:B.
2.(3分)tan30°的值为( )
A. B. C. D.
【解答】解:tan30°=,
故选:B.
3.(3分)下列交通标志中,是中心对称图形的是( )
A. B. C. D.
【解答】解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误;
故选:C.
4.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.647×108 B.6.47×109 C.6.47×1010 D.6.47×1011
【解答】解:647亿=647 0000 0000=6.47×1010,
故选:C.
5.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是( )
A. B. C. D.
【解答】解:从上边看一层三个小正方形,
故选:C.
6.(3分)估计的值是( )
A.在3与4之间 B.在4与5之间 C.在5与6之间 D.在6与7之间
【解答】解:∵25<32<36,
∴5<<6,
∴的值在5与6之间.
故选:C.
7.(3分)一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到红球的概率是( )
A. B. C. D.
【解答】解:P(摸到红球)==.
故选:A.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
8.(3分)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=( )
A.2:3 B.4:9 C.2:5 D.4:25
【解答】解:如图,∵四边形ABCD是平行四边形,
∴DC∥AB,CD=AB.
∴△DFE∽△BFA,
∴S△DEF:S△ABF=DE2:AB2,
∵DE:EC=2:3,
∴DE:DC=DE:AB=2:5,
∴S△DEF:S△ABF=4:25
故选:D.
9.(3分)函数y=﹣的图象经过点A(x1,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是( )
A.y1<y2<0 B.y2<y1<0 C.y1>y2>0 D.y2>y1>0
【解答】解:根据题意得x1•y1=x2•y2=﹣6,
而x1<x2<0,
∴0<y1<y2.
故选:D.
10.(3分)化简+的结果为( )
A.1 B.﹣1 C. D.
【解答】解:原式=﹣==1.
故选:A.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
11.(3分)如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为( )
A. B.4 C.4.5 D.5
【解答】解:设FC′=x,则FD=9﹣x,
∵BC=6,四边形ABCD为矩形,点C′为AD的中点,
∴AD=BC=6,C′D=3.
在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,
∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,
解得:x=5.
故选:D.
12.(3分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有两个相等的实数根;
④抛物线与x轴的另一个交点是(﹣1,0);
⑤当1<x<4时,有y2<y1,
其中正确的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.①②③ B.①③④ C.①③⑤ D.②④⑤
【解答】解:∵抛物线的顶点坐标A(1,3),
∴抛物线的对称轴为直线x=﹣=1,
∴2a+b=0,所以①正确;
∵抛物线开口向下,
∴a<0,
∴b=﹣2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以②错误;
∵抛物线的顶点坐标A(1,3),
∴x=1时,二次函数有最大值,
∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
∵抛物线与x轴的一个交点为(4,0)
而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;
∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
∴当1<x<4时,y2<y1,所以⑤正确.
故选:C.
二、填空题(本大题共6小题,每小题3分,共18分)
13.(3分)计算﹣6的结果是 .
【解答】解:原式=3﹣6×=3﹣2=
故答案为:
14.(3分)分解因式:m2n﹣4mn﹣4n= n(m2﹣4m﹣4) .
【解答】解:m2n﹣4mn﹣4n=n(m2﹣4m﹣4).
故答案为n(m2﹣4m﹣4).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
15.(3分)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 6 .
【解答】解:连接AO,
∵半径是5,CD=1,
∴OD=5﹣1=4,
根据勾股定理,
AD===3,
∴AB=3×2=6,
因此弦AB的长是6.
16.(3分)某一次函数的图象经过点(﹣2,1),且y轴随x的增大而减小,则这个函数的表达式可能是 y=﹣x﹣1(答案不唯一) .(只写一个即可)
【解答】解:∵y随x的增大而减小,
∴k<0.
设一次函数的解析式为y=kx+b(k<0),
∵一次函数的图象经过点(﹣2,1),
∴﹣2k+b=1,
∴当k=﹣1时,b=﹣1,
∴这个函数的表达式可能是y=﹣x﹣1.
故答案为:y=﹣x﹣1(答案不唯一).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
17.(3分)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是 45° .
【解答】解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°.
∵等边三角形ADE,
∴AD=AE,∠DAE=∠AED=60°.
∠BAE=∠BAD+∠DAE=90°+60°=150°,
AB=AE,
∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,
∠BED=∠DEA﹣∠AEB=60°﹣15°=45°.
故答案为:45°.
18.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.将线段AB绕点B顺时针旋转90°,得线段A′B,点A的对应点为A′,连接AA′交线段BC于点D.
(Ⅰ)作出旋转后的图形;
(Ⅱ) = .
【解答】解:(1)如图所示;
(2)如图,以点B为原点建立坐标系,则A(﹣1,2),A′(2,1),C(2,2),B(0,0),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
设直线AA′的解析式为y=kx+b(k≠0),
则,
解得,
故直线AA′的解析式为y=﹣x+;
∵C(2,2),B(0,0),
∴直线BC的解析式为y=x,
∴,
解得,
∴D(,),
∴DB==,CD==,
∴==.
故答案为:.
三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程)
19.(8分)解不等式组
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得 x>﹣1 ;
(Ⅱ)解不等式②,得 x≤﹣1 ;
(Ⅲ)把不等式①和②的解集在数轴上表示出来.
(Ⅳ)原不等式组的解集为 空集 .
【解答】解:
∵解不等式①,得x>﹣1,
解不等式②,得x≤﹣1,
把不等式①和②的解集在数轴上表示出来为:
∴原不等式组的解集为空集,
故答案为:x>﹣1,x≤﹣1,空集.
20.(8分)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)
请根据图中提供的信息,回答下列问题:
(1)a= 10 %,并写出该扇形所对圆心角的度数为 36° ,请补全条形图.
(2)在这次抽样调查中,众数和中位数分别是多少?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?
【解答】解:(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%,
所对的圆心角度数=360°×10%=36°,
被抽查的学生人数:240÷40%=600人,
8天的人数:600×10%=60人,
补全统计图如图所示:
故答案为:10,36°;
(2)参加社会实践活动5天的人数最多,
所以,众数是5天,
600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,
所以,中位数是6天;
(3)2000×(25%+10%+5%)=2000×40%=800人.
21.(10分)已知BC是⊙O的直径,AD是⊙O的切线,切点为A,AD交CB的延长线于点D,连接AB,AO.
(Ⅰ)如图①,求证:∠OAC=∠DAB;
(Ⅱ)如图②,AD=AC,若E是⊙O上一点,求∠E的大小.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(Ⅰ)∵AD是⊙O的切线,切点为A,
∴DA⊥AO,
∴∠DAO=90°,
∴∠DAB+∠BAO=90°,
∵BC是⊙O的直径,
∴∠BAC=90°,
∴∠BAO+∠OAC=90°,
∴∠OAC=∠DAB,
(Ⅱ)∵OA=OC,
∴∠OAC=∠C,
∵AD=AC,
∴∠D=∠C,
∴∠OAC=∠D,
∵∠OAC=∠DAB,
∴∠DAB=∠D,
∵∠ABC=∠D+∠DAB,
∴∠ABC=2∠D,
∵∠D=∠C,
∴∠ABC=2∠C,
∵∠BAC=90°,
∴∠ABC+∠C=90°,
∴2∠C+∠C=90°,
∴∠C=30°,
∴∠E=∠C=30°
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.(10分)如图,大楼AB高16m,远处有一塔CD,某人在楼底B处测得塔顶C的仰角为38.5°,在楼顶A处测得塔顶的仰角为22°,求塔高CD的高及大楼与塔之间的距离BC的长.
(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).
【解答】解:过点A作AE⊥CD于点E,
由题意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=16米,
设大楼与塔之间的距离BD的长为x米,则AE=BD=x,
∵在Rt△BCD中,tan∠CBD=,
∴CD=BD tan 38.5°≈0.8x,
∵在Rt△ACE中,tan∠CAE=,
∴CE=AE tan 22°≈0.4x,
∵CD﹣CE=DE,
∴0.8x﹣0.4x=16,
∴x=40,
即BD=40(米),
CD=0.8×40=32(米),
答:塔高CD是32米,大楼与塔之间的距离BD的长为40米.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.(10分)某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).
(1)分别写出两种优惠方案中y与x之间的关系式;
方案一:y1= 10x+150 ;方案二:y2= 9x+180 .
(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?
(3)学校计划用540元钱购买这两种奖品,最多可以买到 40 个文具盒(直接回答即可).
【解答】解:(1)由题意,可得
y1=40×5+10(x﹣5)=10x+150,
y2=(40×5+10x)×0.9=9x+180.
故答案为10x+150,9x+180;
(2)当x=20时,
y1=10×20+150=350,
y2=9×20+180=360,
可看出方案一省钱;
(3)如果10x+150≤540,那么x≤39,
如果9x+180≤540,那么x≤40,
所以学校计划用540元钱购买这两种奖品,最多可以买到40个文具盒.
故答案为40.
24.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 PM=PN ,位置关系是 PM⊥
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
PN ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
【解答】解:(1)∵点P,N是BC,CD的中点,
∴PN∥BD,PN=BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案为:PM=PN,PM⊥PN,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)由旋转知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形,
同(1)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形,
(3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
∴MN最大时,△PMN的面积最大,
∴DE∥BC且DE在顶点A上面,
∴MN最大=AM+AN,
连接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°,
∴AM=2,
在Rt△ABC中,AB=AC=10,AN=5,
∴MN最大=2+5=7,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴S△PMN最大=PM2=×MN2=×(7)2=.
方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
∴PM最大时,△PMN面积最大,
∴点D在BA的延长线上,
∴BD=AB+AD=14,
∴PM=7,
∴S△PMN最大=PM2=×72=
25.(10分)如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.
(1)求抛物线的函数表达式;
(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;
(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)把A(﹣5,0),B(1,0)两点坐标代入y=﹣x2+bx+c,
得到,
解得,
∴抛物线的函数表达式为y=﹣x2﹣4x+5.
(2)如图1中,
∵抛物线的对称轴x=﹣2,E(x,﹣x2﹣4x+5),
∴EH=﹣x2﹣4x+5,EF=﹣2﹣x,
∴矩形EFDH的周长=2(EH+EF)=2(﹣x2﹣5x+3)=﹣2(x+)2+,
∵﹣2<0,
∴x=﹣时,矩形EHDF的周长最大,最大值为.
(3)如图2中,设P(﹣2,m)
①当∠ACP=90°,∵AC2+PC2=PA2,
∴(5)2+22+(m﹣5)2=32+m2,
解得m=7,
∴P1(﹣2,7).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
②当∠CAP=90°时,∵AC2+PA2=PC2,
∴(5)2+32+m2=22+(m﹣5)2,
解得m=﹣3,
∴P2(﹣2,﹣3).
③当∠APC=90°时,∵PA2+PC2=AC2,
∴32+m2+22+(m﹣5)2=(5)2,
解得m=6或﹣1,
∴P3(﹣2,6),P4(﹣2,﹣1),
综上所述,满足条件的点P坐标为(﹣2,7)或(﹣2,﹣3)或(﹣2,6)或(﹣2,﹣1).
由莲山课件提供http://www.5ykj.com/ 资源全部免费