2018年中考压轴题汇编代数计算及通过代数计算进行说理(带答案)
加入VIP免费下载

本文件来自资料包: 《2018年中考压轴题汇编代数计算及通过代数计算进行说理(带答案)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 第三部分图形运动中的计算说理问题 ‎3.1 代数计算及通过代数计算进行说理问题 例 1 2017年北京市中考第29题 在平面直角坐标系中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称点P′为点P关于⊙C的反称点.如图1为点P及其关于⊙C的反称点P′的示意图.‎ 特别地,当点P′与圆心C重合时,规定CP′=0.‎ ‎(1)当⊙O的半径为1时,‎ ‎①分别判断点M(2, 1),N,T 关于⊙O的反称点是否存在?若存在,求其坐标;‎ ‎②点P在直线y=-x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围; ‎ 图1‎ ‎(2)⊙C的圆心在x轴上,半径为1,直线与x轴、y轴分别交于点A、B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 例2 2017年福州市中考第22题 如图1,抛物线与x轴交于 A、B两点(点A在点B左侧),与y轴交于点C,顶点为D.‎ ‎(1)求点A、B、C的坐标;‎ ‎(2)联结CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,联结AE、AD.求证:∠AEO=∠ADC;‎ ‎(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标. 图1‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 例3 2017年南京市中考第26题 已知二次函数y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).‎ ‎(1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;‎ ‎(2)设该函数的图像的顶点为C,与x轴相交于A、B两点,与y轴交于点D.‎ ‎①当△ABC的面积等于1时,求a的值 ‎②当△ABC的面积与△ABD的面积相等时,求m的值.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 第三部分图形运动中的计算说理问题答案 ‎3.1 代数计算及通过代数计算进行说理问题 例 1 2017年北京市中考第29题 在平面直角坐标系中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称点P′为点P关于⊙C的反称点.如图1为点P及其关于⊙C的反称点P′的示意图.‎ 特别地,当点P′与圆心C重合时,规定CP′=0.‎ ‎(1)当⊙O的半径为1时,‎ ‎①分别判断点M(2, 1),N,T 关于⊙O的反称点是否存在?若存在,求其坐标;‎ ‎②点P在直线y=-x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围; ‎ 图1‎ ‎(2)⊙C的圆心在x轴上,半径为1,直线与x轴、y轴分别交于点A、B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.‎ 动感体验 请打开几何画板文件名“15北京29”,拖动点圆心C在x轴上运动,可以体验到,当点P′在圆内时,CP的变化范围是1<CP≤2.‎ 思路点拨 ‎1.反称点P′是否存在,就是看CP′是否大于或等于0.‎ ‎2.第(2)题反称点P′在圆内,就是0≤CP′<1,进一步转化为0≤2-CP<1.‎ 满分解答 ‎(1)①对于M(2, 1),OM=.因为OM′=<0,所以点M不存在反称点(如图2).‎ 如图3,对于N,ON=.因为ON′=,所以点N′的坐标为.‎ 如图4,对于T ,OT=2.因为OT′=0,所以点T关于⊙O的反称点T′是(0,0).‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 图2 图3 图4‎ ‎②如图5,如果点P′存在,那么OP′=2-OP≥0.所以OP≤2.‎ 设直线y=-x+2与x轴、y轴的交点分别为A、B,那么OA=OB=2.‎ 如果点P在线段AB上,那么OP≤2.‎ 所以满足OP≤2且点P′不在x轴上的点P的横坐标的取值范围是0≤x<2.‎ ‎(2)由,得A(6, 0),B.所以tan∠A=.‎ 所以∠A=30°.‎ 因为点P′在⊙C的内部,所以0≤CP′<1.‎ 解不等式组0≤2-CP<1,得1<CP≤2.‎ 过点C作CP⊥AB于P,那么CP=AC.所以2<AC≤4.‎ 所以2≤OC<4.因此圆心C的横坐标的取值范围是2≤x<4(如图6,图7所示).‎ 图5 图6 图7‎ 考点伸展 第(2)题如果把条件“反称点P′在⊙C的内部”改为“反称点P′存在”,那么圆心C的横坐标的取值范围是什么呢?‎ 如果点P′存在,那么CP′≥0.‎ 解不等式2-CP≥0,得CP≤2.‎ 所以AC≤4.因此圆心C的横坐标的取值范围是2≤x<6.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 例2 2017年福州市中考第22题 如图1,抛物线与x轴交于 A、B两点(点A在点B左侧),与y轴交于点C,顶点为D.‎ ‎(1)求点A、B、C的坐标;‎ ‎(2)联结CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,联结AE、AD.求证:∠AEO=∠ADC;‎ ‎(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标. 图1‎ 动感体验 请打开几何画板文件名“14福州22”,拖动点P在抛物线上运动,可以体验到,当PE最小时,PQ也最小.‎ 思路点拨 ‎1.计算点E的坐标是关键的一步,充分利用、挖掘等角(或同角)的余角相等.‎ ‎2.求PE的最小值,设点P的坐标为(x, y),如果把PE2表示为x的四次函数,运算很麻烦.如果把PE2转化为y的二次函数就比较简便了.‎ 满分解答 ‎(1)由,得,.‎ 由,‎ 得,.‎ ‎(2)设CD与AE交于点F,对称轴与x轴交于点M,作DN⊥y轴于N.‎ 如图2,由,,得DN=3,.因此.‎ 如图3,由OE⊥CD,得∠EOM=∠DCN.因此.‎ 所以EM=2,E(3, 2).‎ 由,,得.‎ 因此,.‎ 所以∠AEM=∠DAM.于是可得∠AED=90°.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 如图4,在Rt△EHF与Rt△DAF中,因为∠EFH=∠DFA,‎ 所以∠HEF=∠ADF,即∠AEO=∠ADC.‎ 图2 图3 图4‎ ‎(3)如图5,在Rt△EPQ中,EQ为定值,因此当PE最小时,PQ也最小.‎ 设点P的坐标为(x, y),那么PE2=(x-3)2+(y-2)2.‎ 已知,所以.‎ 因此.‎ 所以当y=1时,PE取得最小值.‎ 解方程,得x=5,或x=1(在对称轴左侧,舍去).‎ 因此点P的坐标为(5, 1).此时点Q的坐标为(3, 1)或(如图6所示).‎ 图5 图6 图7‎ 考点伸展 第(3)题可以这样求点Q的坐标:设点Q的坐标为(m, n).‎ 由E(3, 2)、P(5, 1),可得PE2=5.又已知EQ2=1,所以PQ2=4.‎ 列方程组 解得 ‎ 还可以如图7那样求点Q的坐标:‎ 对于Q(m, n),根据两个阴影三角形相似,可以列方程组.‎ 同样地,对于Q′(m, n),可以列方程组.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 例3 2017年南京市中考第26题 已知二次函数y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).‎ ‎(1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;‎ ‎(2)设该函数的图像的顶点为C,与x轴相交于A、B两点,与y轴交于点D.‎ ‎①当△ABC的面积等于1时,求a的值 ‎②当△ABC的面积与△ABD的面积相等时,求m的值.‎ 动感体验 请打开几何画板文件名“13南京26”,拖动y轴上表示实数a的点可以改变a的值,拖动点A可以改变m的值.分别点击按钮“m1”、“m2”、“m3”,再改变实数a,可以体验到,这3种情况下,点C、D到x轴的距离相等.‎ 请打开超级画板文件名“13南京26”, 拖动点A可以改变m的值,竖直拖动点C可以改变a的值.分别点击按钮,可得到△ABC的面积与△ABD的面积相等的三种情形。‎ 思路点拨 ‎1.第(1)题判断抛物线与x轴有两个交点,容易想到用判别式.事实上,抛物线与x轴的交点A、B的坐标分别为 (m,0)、 (m+1,0),AB=1.‎ ‎2.当△ABC的面积等于1时,点C到x轴的距离为2.‎ ‎3.当△ABC的面积与△ABD的面积相等时,C、D到x轴的距离相等.‎ ‎4.本题大量的工作是代入计算,运算比较繁琐,一定要仔细.‎ 满分解答 ‎(1)由y=a(x-m)2-a(x-m)=a(x-m)( x-m-1),‎ 得抛物线与x轴的交点坐标为A(m,0)、B(m+1,0).‎ 因此不论a与m为何值,该函数的图像与x轴总有两个公共点.‎ ‎(2)①由y=a(x-m)2-a(x-m) ,‎ 得抛物线的顶点坐标为.‎ 因为AB=1,S△ABC=,所以a=±8.‎ ‎②当△ABC的面积与△ABD的面积相等时,点C与点D到x轴的距离相等.‎ 第一种情况:如图1,C、D重合,此时点D的坐标可以表示为,‎ 将代入,得.‎ 解得.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 图1‎ 第二种情况:如图2,图3,C、D在x轴两侧,此时点D的坐标可以表示为,‎ 将代入,得.‎ 解得.‎ 图2 图3‎ 考点伸展 第(1)题也可以这样说理:‎ 由于由,抛物线的顶点坐标为.‎ 当a>0时,抛物线的开口向上,而顶点在x轴下方,所以抛物线与x轴由两个交点;‎ 当a<0时,抛物线的开口向下,而顶点在x轴上方,所以抛物线与x轴由两个交点.‎ 因此不论a与m为何值,该函数的图像与x轴总有两个公共点.‎ 第(1)题也可以用根的判别式Δ说理:‎ 由y=a(x-m)2-a(x-m)=a[x2-(‎2m+1)x+m2+m],‎ 得>0.‎ 因此不论a与m为何值,该函数的图像与x轴总有两个公共点.‎ 这种方法是同学们最容易想到的,但是这种方法的运算量很大,一定要仔细.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料