2018年高考数学一轮复习(文科)训练天天练 34 (含答案和解析)
加入VIP免费下载

本文件来自资料包: 《2018年高考数学一轮复习(文科)训练天天练 34 (含答案和解析)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 天天练34 直线与圆锥曲线的综合 ‎             ‎ 一、选择题 ‎1.已知抛物线y2=16x,直线l过点M(2,1),且与抛物线交于A,B两点,|AM|=|BM|,则直线l的方程是(  )‎ A.y=8x+15 B.y=8x-15‎ C.y=6x-11 D.y=5x-9‎ 答案:B 解析:设A(x1,y1),B(x2,y2)(x1≠x2),代入抛物线方程得y=16x1,y=16x2,两式相减得,(y1+y2)(y1-y2)=16(x1-x2),即=,又y1+y2=2,所以kAB=8,故直线l的方程为y=8x-15.‎ ‎2.已知直线y=kx+1与双曲线x2-=1交于A,B两点,且|AB|=8,则实数k的值为(  )‎ A.± B.±或± C.± D.± 答案:B 解析:由直线与双曲线交于A,B两点,得k≠±2.将y=kx+1代入x2-=1得(4-k2)x2-2kx-5=0,则Δ=4k2+4(4-k2)×5>0,k20)恒有公共点,则m的取值范围是(  )‎ A.[3,+∞) B.(-∞,3]‎ C.(3,+∞) D.(-∞,3)‎ 答案:A 解析:直线y=kx-k-1恒过定点(1,-1).因为直线y=kx-k-1与曲线C:x2+2y2=m(m>0)恒有公共点,则曲线C 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 表示椭圆,点(1,-1)在椭圆内或椭圆上,所以12+2×(-1)2≤m,所以m≥3,选A.‎ ‎4.(2018·宁波九校联考(二))过双曲线x2-=1(b>0)的左顶点A作斜率为1的直线l,若l与双曲线的两条渐近线分别交于B,C,且2=,则该双曲线的离心率为(  )‎ A. B. C. D. 答案:C 解析:由题意可知,左顶点A(-1,0).又直线l的斜率为1,所以直线l的方程为y=x+1,若直线l与双曲线的渐近线有交点,则b≠±1.又双曲线的两条渐近线的方程分别为y=-bx,y=bx,所以可得xB=-,xC=.由2=,可得2(xB-xA)=xC-xB,故2×=-,得b=2,故e==.‎ ‎5.(2018·太原一模)已知抛物线y2=2px(p>0)的焦点为F,△ABC的顶点都在抛物线上,且满足++=0,则++=(  )‎ A.0 B.1‎ C.2 D.2p 答案:A 解析:设点A(x1,y1),B(x2,y2),C(x3,y3),F,则++=(0,0),故y1+y2+y3=0.∵===,同理可知=,=,∴++==0.‎ ‎6.(2018·福建福州外国语学校适应性考试)已知双曲线C:-=1(a>0,b>0)的焦距为2,抛物线y=x2+与双曲线C 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 的渐近线相切,则双曲线C的方程为(  )‎ A.-=1 B.-=1‎ C.x2-=1 D.-y2=1‎ 答案:D 解析:由题意可得c=,得a2+b2=5,双曲线的渐近线方程为y=±x.将渐近线方程和抛物线方程y=x2+联立,可得x2±x+=0,由渐近线和抛物线相切可得Δ=-4××=0,即有a2=4b2,又a2+b2=5,解得a=2,b=1,可得双曲线的方程为-y2=1.故选D.‎ ‎7.(2018·天津红桥区期末)已知双曲线-=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O,A,B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=(  )‎ A.1 B. C.2 D.3‎ 答案:C 解析:因为双曲线方程为-=1,所以双曲线的渐近线方程是y=±x.又抛物线y2=2px(p>0)的准线方程是x=-,故A,B两点的纵坐标分别是y=±.因为双曲线的离心率为2,所以=2,所以=3,则=,A,B两点的纵坐标分别是y=±=±.又△AOB的面积为,x轴是∠AOB的平分线,所以×p×=,解得p=2.故选C.‎ ‎8.(2017·新课标全国卷Ⅰ,10)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为(  )‎ A.16  B.14‎ C.12   D.10‎ 答案:A 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 解析:因为F为y2=4x的焦点,所以F(1,0).‎ 由题意直线l1,l2的斜率均存在,且不为0,设l1的斜率为k,则l2的斜率为-,故直线l1,l2的方程分别为y=k(x-1),y=-(x-1).‎ 由得k2x2-(2k2+4)x+k2=0.‎ 设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=1,‎ 所以|AB|=·|x1-x2|‎ ‎=· ‎=·=.‎ 同理可得|DE|=4(1+k2).‎ 所以|AB|+|DE|=+4(1+k2)‎ ‎=4+1+1+k2‎ ‎=8+4k2+≥8+4×2=16,‎ 当且仅当k2=,即k=±1时,取得等号.‎ 故选A.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 二、填空题 ‎9.(2018·昆明二模)直线l:y=k(x+)与曲线C:x2-y2=1(x0)上一点M(1,m)到其焦点的距离为5,双曲线x2-=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM垂直,则实数a=________.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 答案: 解析:根据抛物线的定义得1+=5,所以p=8,所以m=±4.由对称性不妨取M(1,4),A(-1,0),则直线AM的斜率为2,由题意得-×2=-1,故a=.‎ 三、解答题 ‎12.(2018·山西大学附属中学期中)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.‎ ‎(1)求E的方程;‎ ‎(2)设过点A的直线l与E交于P,Q两点,当△OPQ的面积最大时,求l的方程.‎ 解析:(1)设F(c,0),由条件知=,得c=.‎ 又=,所以a=2,b2=a2-c2=1,故E的方程为+y2=1.‎ ‎(2)依题意当l⊥x轴时不合题意,故设直线l的方程为y=kx-2,P(x1,y1),Q(x2,y2),‎ 将y=kx-2代入+y2=1,得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=,‎ 从而|PQ|=|x1-x2|=.‎ 又点O到直线PQ的距离d=,‎ 所以△OPQ的面积S△OPQ=d|PQ|=.‎ 设=t,则t>0,S△OPQ==≤=1,当且仅当t=2,即k=±时等号成立,且满足Δ>0.所以当△OPQ的面积最大时,l 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 的方程为y=x-2或y=-x-2.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料