由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年新疆乌鲁木齐市中考数学模拟试卷(一)
一.选择题(共10小题,满分40分,每小题4分)
1.(4分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=( )
A.0 B.2a+2b C.2b﹣2c D.2a+2c
2.(4分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是( )
A.①②③ B.①②④ C.①③④ D.①②③④
3.(4分)若5x=125y,3y=9z,则x:y:z等于( )
A.1:2:3 B.3:2:1 C.1:3:6 D.6:2:1
4.(4分)下列说法中,正确的是( )
A.“打开电视,正在播放新闻联播节目”是必然事件
B.某种彩票中奖概率为10%是指买10张一定有一张中奖
C.了解某种节能灯的使用寿命应采用全面检查
D.一组数据3,5,4,6,7的中位数是5,方差是2
5.(4分)如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC的度数为( )
A.α B. C.90﹣α D.90﹣α
6.(4分)利用一次函数y=ax+b的图象解关于x的不等式ax+b<0,若它的解集是x>﹣2,则一次函数y=ax+b的图象为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B. C. D.
7.(4分)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:
(1)甲班捐款2500元,乙班捐款2700元;
(2)乙班平均每人捐款数比甲班平均每人捐款数多;
(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得( )
A. B.
C.×(1+)= D.
8.(4分)已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为( )
A.12π cm2 B.15π cm2 C.24π cm2 D.30π cm2
9.(4分)如图,在矩形ABCD中,AD=10,AB=14,点E为DC上一个动点,若将△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,则点D′到AB的距离为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.6 B.6或8 C.7或8 D.6或7
10.(4分)如图所示,已知A(0.2,y1),B(2,y2)为反比例函数y= 图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
A.(0.5,0) B.(1,0) C.(1.5,0) D.(2.5,0)
二.填空题(共5小题,满分20分,每小题4分)
11.(4分)计算:(﹣2)2+(2017﹣)0﹣(﹣2)3= .
12.(4分)如图,已知菱形ABCD对角线交于点O,AE⊥CD于E,AE=OD,则∠CAE= .
13.(4分)元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了 元.
14.(4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
15.(4分)在平面直角坐标系中,A(﹣2,0),B(1,﹣6),若抛物线y=ax2+(a+2)x+2与线段AB有且仅有一个公共点,则a的取值范围是 .
三.解答题(共9小题,满分90分)
16.(8分)解关于x的不等式组:,其中a为参数.
17.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求的值.
18.(10分)某种水果的价格如表:
购买的质量(千克)
不超过10千克
超过10千克
每千克价格
6元
5元
张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?
19.(10分)如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.
(1)若EF=2,求△AEF的面积;
(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20.(12分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t)
频数
百分比
2≤x<3
2
4%
3≤x<4
12
24%
4≤x<5
5≤x<6
10
20%
6≤x<7
12%
7≤x<8
3
6%
8≤x<9
2
4%
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.
21.(10分)如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1,L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?
23.(10分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.
(1)求证:AC平分∠DAB;
(2)若CD=4,AD=8,试求⊙O的半径.
24.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年新疆乌鲁木齐市中考数学模拟试卷(一)
参考答案与试题解析
一.选择题(共10小题,满分40分,每小题4分)
1.
【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,
则|a+b|+|a+c|﹣|b﹣c|
=a+b﹣a﹣c﹣b+c
=0.
故选:A.
2.
【解答】解:点E有4种可能位置.
(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,
∵∠AOC=∠BAE1+∠AE1C,
∴∠AE1C=β﹣α.
(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,
∴∠AE2C=α+β.
(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=α﹣β.
(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°﹣α﹣β.
∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.
故选:D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
3.
【解答】解:∵5x=(53)y=53y,3y=(32)z=32z,
∴x=3y,y=2z,即x=3y=6z;
设z=k,则y=2k,x=6k;(k≠0)
∴x:y:z=6k:2k:k=6:2:1.
故选:D.
4.
【解答】解:A、打开电视,正在播放《新闻联播》节目是随机事件,故本选项错误;
B、某种彩票中奖概率为10%,买这种彩票10张不一定会中奖,故本选项错误;
C、了解某种节能灯的使用寿命应采用抽样调查,故本选项错误;
D、一组数据3,5,4,6,7的中位数是5,方差是2,故本选项正确.
故选:D.
5.
【解答】解:如图,过C作CE⊥AB于E,CF⊥BD于F,CG⊥AD于G,
∵∠ABD=52°,∠ABC=116°,
∴∠DBC=∠CBE=64°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴BC平分∠DBE,
∴CE=CF,
又∵AC平分∠BAD,
∴CE=CG,
∴CF=CG,
又∵CG⊥AD,CF⊥DB,
∴CD平分∠BDG,
∵∠CBE是△ABC的外角,∠DBE是△ABD的外角,
∴∠ACB=∠CBE﹣∠CAB=(∠DBE﹣∠DAB)=∠ADB,
∴∠ADB=2∠ACB=2α°,
∴∠BDG=180°﹣2α°,
∴∠BDC=∠BDG=90°﹣α°,
故选:C.
6.
【解答】解:∵不等式ax+b<0的解集是x>﹣2,
∴当x>﹣2时,函数y=ax+b的图象在x轴下方.
故选:A.
7.
【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.
根据(2)中所给出的信息,方程可列为:×(1+)=.
故选:C.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
8.
【解答】解:这个圆锥的高为4cm,底面圆的半径为4cm,
所以圆锥的母线长==5(cm),
所以圆锥的侧面积=•2π•3•5=15π(cm2).
故选:B.
9.
【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P
∵点D的对应点D′落在∠ABC的角平分线上,
∴MD′=PD′,
又∵∠D'MB=∠MBP=∠BPD'=90°,
∴四边形BPD'M为正方形,
设MD′=x,则PD′=BM=x,
∴AM=AB﹣BM=14﹣x,
又折叠可得AD=AD′=10,
∴Rt△AD'M中,x2+(14﹣x)2=102,
解得x=6或8,
即MD′=6或8,
∴点D′到AB的距离为6或8,
故选:B.
10.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:把A(0.2,y1),B(2,y2)代入y= 得y1=5,y2=,则A点坐标为(0.2,5),B点坐标为(2,),
设直线AB的解析式为y=kx+b,
把A(0.2,5),B(2,)代入得,解得,
所以直线AB的解析式为y=﹣y=﹣x+,
因为|PA﹣PB|≤AB,
所以当点P为直线AB与x轴的交点时,线段AP与线段BP之差达到最大,
把y=0代入y=﹣x+,得0=﹣x+解得x=,
所以P点坐标为(,0).
二.填空题(共5小题,满分20分,每小题4分)
11.
【解答】解:(﹣2)2+(2017﹣)0﹣(﹣2)3
=4+1+8
=13.
故答案为:13.
12.
【解答】解:∵菱形ABCD,
∴AC⊥BD,AD=DC,
∵AE⊥CD,
∴∠AEC=∠DOC=90°,
∵∠AOD=∠AED=90°,∠AFO=∠DFE,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴△AFO∽△DFE,
∴∠CAE=∠CDO,
在△AEC和△DOC中,
,
∴△AEC≌△DOC(ASA),
∴AC=CD,
∴AC=CD=AD,即△ACD为等边三角形,
∵AE⊥CD,
∴AE为∠CAD的平分线,
则∠CAE=30°.
故答案为:30°.
13.
【解答】解:设这件运动服的标价为x元,则:
妈妈购买这件衣服实际花费了0.8x元,
∵妈妈以八折的优惠购买了一件运动服,节省30元
∴可列出关于x的一元一次方程:
x﹣0.8x=30
解得:x=150
0.8x=120
故妈妈购买这件衣服实际花费了120元,
故答案为120.
14.
【解答】解:设⊙O与矩形ABCD的另一个交点为M,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
连接OM、OG,则M、O、E共线,
由题意得:∠MOG=∠EOF=45°,
∴∠FOG=90°,且OF=OG=1,
∴S透明区域=+2××1×1=+1,
过O作ON⊥AD于N,
∴ON=FG=,
∴AB=2ON=2×=,
∴S矩形=2×=2,
∴==.
故答案为:.
15.
【解答】解:当抛物线过A点,B点为临界,
代入A(﹣2,0)则4a﹣2(a+2)+2=0,
解得:a=1,
代入B(1,﹣6),则a+(a+2)+2=﹣6,
解得:a=﹣5,
又a≠0,
所以a的取值范围是﹣5≤a≤1且a≠0.
故答案为﹣5≤a≤1且a≠0.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三.解答题(共9小题,满分90分)
16.
【解答】解:,
解不等式①得:﹣3a<5x≤1﹣3a,
﹣a<x≤,
解不等式②得:3a<5x≤1+3a,
a<x≤,
∵当﹣a=a时,a=0,
当=时,a=0,
当﹣a=时,a=﹣,
当a=时,a=,
∴当或时,原不等式组无解;
当时,原不等式组的解集为:;
当时,原不等式组的解集为:.
17.
【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,
∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,
∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,
∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.
∵x,y,z均为实数,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴x=y=z.
∴==1.
18.
【解答】解:设张欣第一次、第二次购买了这种水果的量分别为x千克、y千克,因为第二次购买多于第一次,则x<12.5<y.
①当x≤10时,,
解得;
②当10<x<12.5时,,此方程组无解.
答:张欣第一次、第二次购买了这种水果的量分别为7千克、18千克.
19.
【解答】(1)解:∵四边形ABCD是平行四边形,
∴∠D=∠B,
∵BF=DE,∠DCE=∠BCF,
∴△CDE≌△CBF(AAS),
∴CD=CB,
∴▱ABCD是菱形,
∴AD=AB,
∴AD﹣DE=AB﹣BF,即AE=AF,
∵∠A=60°,
∴△AEF是等边三角形,
∵EF=2,
∴S△AEF=×22=;
(2)证明:如图2,延长DP交BC于N,连结FN,
∵四边形ABCD是菱形,
∴AD∥BC,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠EDP=∠PNC,∠DEP=∠PCN,
∵点P是CE的中点,
∴CP=EP.
∴△CPN≌△EPD,
∴DE=CN,PD=PN.
又∵AD=BC.
∴AD﹣DE=BC﹣CN,即AE=BN.
∵△AEF是等边三角形,
∴∠AEF=60°,EF=AE.
∴∠DEF=120°,EF=BN.
∵AD∥BC,
∴∠A+∠ABC=180°,
又∵∠A=60°,
∴∠ABC=120°,
∴∠ABC=∠DEF.
又∵DE=BF,BN=EF.
∴△FBN≌△DEF,
∴DF=NF,
∵PD=PN,
∴PF⊥PD.
20.
【解答】解:(1)调查的总数是:2÷4%=50(户),
则6≤x<7部分调查的户数是:50×12%=6(户),
则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所占的百分比是:×100%=30%.
故答案为:15,30%,6;
补全频数分布表和频数分布直方图,
如图所示:
(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);
(3)在2≤x<3范围的两户用a、b表示,
8≤x<9这两个范围内的两户用1,2表示.
画树状图:
则抽取出的2个家庭来自不同范围的概率是: =.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
21.
【解答】解:过P作PB⊥AM于B,
在Rt△APB中,∵∠PAB=30°,
∴PB=AP=×32=16海里,
∵16<16,
故轮船有触礁危险.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
为了安全,应该变航行方向,并且保证点P到航线的距离不小于暗礁的半径16海里,即这个距离至少为16海里,
设安全航向为AC,作PD⊥AC于点D,
由题意得,AP=32海里,PD=16海里,
∵sin∠PAC===,
∴在Rt△PAD中,∠PAC=45°,
∴∠BAC=∠PAC﹣∠PAB=45°﹣30°=15°.
答:轮船自A处开始至少沿南偏东75°度方向航行,才能安全通过这一海域.
22.
【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;
(2)(330﹣240)÷60=1.5(千米/分);
(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得
k=﹣1.5,b=330
所以s1=﹣1.5t+330;
设L2为s2=k′t,把点(60,60)代入得
k′=1
所以s2=t;
(4)当t=120时,s1=150,s2=120
150﹣120=30(千米);
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以2小时后,两车相距30千米;
(5)当s1=s2时,﹣1.5t+330=t
解得t=132
即行驶132分钟,A、B两车相遇.
23.
【解答】(1)证明:如图1,连接OC,
,
∵CD是切线,
∴OC⊥CD.
∵AD⊥CD,
∴AD∥OC,
∴∠1=∠4.
∵OA=OC,
∴∠2=∠4,
∴∠1=∠2,
∴AC平分∠DAB.
(2)解:如图2,作OE⊥AD于点E,
,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
设⊙O的半径为x,
∵AD⊥CD,OE⊥AD,
∴OE∥CD;
由(1),可得AD∥OC,
∴四边形OEDC是矩形,
∴OE=CD=4,AE=AD﹣DE=8﹣x,
∴42+(8﹣x)2=x2,
∴80﹣16x+x2=x2,
解得x=5,
∴⊙O的半径是5.
24.
【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),
∴a+a+b=0,即b=﹣2a,
∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,
∴抛物线顶点D的坐标为(﹣,﹣);
(2)∵直线y=2x+m经过点M(1,0),
∴0=2×1+m,解得m=﹣2,
∴y=2x﹣2,
则,
得ax2+(a﹣2)x﹣2a+2=0,
∴(x﹣1)(ax+2a﹣2)=0,
解得x=1或x=﹣2,
∴N点坐标为(﹣2,﹣6),
∵a<b,即a<﹣2a,
∴a<0,
如图1,设抛物线对称轴交直线于点E,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵抛物线对称轴为x=﹣=﹣,
∴E(﹣,﹣3),
∵M(1,0),N(﹣2,﹣6),
设△DMN的面积为S,
∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,
(3)当a=﹣1时,
抛物线的解析式为:y=﹣x2﹣x+2=﹣(x﹣)2+,
有,
﹣x2﹣x+2=﹣2x,
解得:x1=2,x2=﹣1,
∴G(﹣1,2),
∵点G、H关于原点对称,
∴H(1,﹣2),
设直线GH平移后的解析式为:y=﹣2x+t,
﹣x2﹣x+2=﹣2x+t,
x2﹣x﹣2+t=0,
△=1﹣4(t﹣2)=0,
t=,
当点H平移后落在抛物线上时,坐标为(1,0),
把(1,0)代入y=﹣2x+t,
t=2,
∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费