2015年北京市高考数学理科试题
本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.复数
A. B. C. D.
2.若,满足则的最大值为
A.0 B.1 C. D.2
3.执行如图所示的程序框图,输出的结果为
A. B. C. D.
4.设,是两个不同的平面,是直线且.“”是“”的
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
5.某三棱锥的三视图如图所示,则该三棱锥的表面积是
6
A. B. C. D.5
6.设是等差数列. 下列结论中正确的是
A.若,则 B.若,则
C.若,则 D.若,则
7.如图,函数的图象为折线,则不等式的解集是
A. B.
C. D.
8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是
6
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
9.在的展开式中,的系数为 .(用数字作答)
10.已知双曲线的一条渐近线为,则 .
11.在极坐标系中,点到直线的距离为 .
12.在中,,,,则 .
13.在中,点,满足,.若,则 ; .
14.设函数
①若,则的最小值为 ;
②若恰有2个零点,则实数的取值范围是 .
三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)
15.(本小题13分)
已知函数.
(Ⅰ) 求的最小正周期;
(Ⅱ) 求在区间上的最小值.
6
16.(本小题13分)
,两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:
组:10,11,12,13,14,15,16
组:12,13,15,16,17,14,
假设所有病人的康复时间互相独立,从,两组随机各选1人,组选出的人记为甲,组选出的人记为乙.
(Ⅰ) 求甲的康复时间不少于14天的概率;
(Ⅱ) 如果,求甲的康复时间比乙的康复时间长的概率;
(Ⅲ) 当为何值时,,两组病人康复时间的方差相等?(结论不要求证明)
17.(本小题14分)
如图,在四棱锥中,为等边三角形,平面平面,,,,,为的中点.
(Ⅰ) 求证:;
(Ⅱ) 求二面角的余弦值;
(Ⅲ) 若平面,求的值.
18.(本小题13分)
已知函数.
(Ⅰ)求曲线在点处的切线方程;
6
(Ⅱ)求证:当时,;
(Ⅲ)设实数使得对恒成立,求的最大值.
6
19.(本小题14分)
已知椭圆:的离心率为,点和点都在椭圆上,直线交轴于点.
(Ⅰ)求椭圆的方程,并求点的坐标(用,表示);
(Ⅱ)设为原点,点与点关于轴对称,直线交轴于点.问:轴上是否存在点,使得?若存在,求点的坐标;若不存在,说明理由.
20.(本小题13分)
已知数列满足:,,且.
记集合.
(Ⅰ)若,写出集合的所有元素;
(Ⅱ)若集合存在一个元素是3的倍数,证明:的所有元素都是3的倍数;
(Ⅲ)求集合的元素个数的最大值.
(考生务必将答案答在答题卡上,在试卷上作答无效)
6