南充市2015年中考数学试卷
(满分120分,考试时间120分钟)
一、选择题(本大题共10个小题,每小题3分,共30分)
每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项代号在答题卡对应位置填涂.填涂正确记3分,不涂、错涂或多涂记0分.
1.计算3+(-3)的结果是( )
(A)6 (B)-6 (C)1 (D)0
2.下列运算正确的是( )
(A)3x-2x=x (B) (C) (D)
3.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是( )
正面
(A) (B) (C) (D)
4.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )
(A)25台 (B)50台 (C)75台 (D)100台
5.如图,一艘海轮位于灯塔P的北偏东方向55°,距离灯塔为2 海里的点A处.如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长是( )
(A)2 海里 (B)海里 (C)海里 (D)海里
北
A
P
B
6.若m>n,下列不等式不一定成立的是( )
(A)m+2>n+2 (B)2m>2n (C) (D)
7.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为a;如果投掷一枚硬币,正面向上的概率为b.关于a,b大小的正确判断是( )
(A)a>b (B)a=b (C)a<b (D)不能判断
5
8.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是( )
(A)60° (B)65° (C)70° (D)75°
B
A
P
C
O
A
B
D
C
E
第8题图 第9题图
9.如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为( )
(A)1:2 (B)1:3 (C)1: (D)1:
10.关于x的一元二次方程有两个整数根且乘积为正,关于y的一元二次方程同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②;③.其中正确结论的个数是( )
(A)0个 (B)1个 (C)2个 (D)3个
二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填写在对应横线上.
11.计算的结果是_____.
12.不等式的解集是______.
13.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是_____度.
A
E
D
B
C
14.从分别标有数-3,-2,-1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是______.
15.已知关于x,y的二元一次方程组的解互为相反数,则k的值是____.
16.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点
5
Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)
C
D
P
Q
B
A
O
三、解答题(本大题共9个小题,共72分)
17.(6分) 计算:.
18.(6分)某学校为了了解学生上学交通情况,选取九年级全体学生进行调查。根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°。已知九年级乘公交车上学的人数为50人.
自行车
公交车
步行
其
它
(1)九年级学生中,骑自行车和乘公交车上学哪个更多?多多少人?
(2)如果全校有学生2 000人,学校准备的400个自行车停车位是否足够?
19.(8分)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.
求证:(1)△AEF≌△CEB;(2)AF=2CD.
A
B
C
D
E
F
20.(8分)已知关于x的一元二次方程,p为实数.
(1)求证:方程有两个不相等的实数根.
(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)
5
21.(8分)反比例函数与一次函数交于点A(1,2k-1).
(1)求反比例函数的解析式;
(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.
O
x
y
22.(8分)如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.
(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)
(2)如果AM=1,sin∠DMF=,求AB的长.
A
D
B
C
P
Q
M
E
F
23.(8分)
某工厂在生产过程中每消耗1万度电可以产生产值5.5万元.电力公司规定,该工厂每月用电量不得超过16万度;月用电量不超过4万度时,单价都是1万元/万度;超过4万度时,超过部分电量单价将按用电量进行调整,电价y与月用电量x的函数关系可以用如图来表示.(效益=产值-用电量×电价);
(1)设工厂的月效益为z(万元),写出z与月用电量x(万度)之间的函数关系式,并写出自变量的取值范围;
(2)求工厂最大月效益.
O
x(月用电量)
y(单价)
1
4
8
2
1.5
24.(10分)如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,,.△ADP沿点A旋转至△ABP’,连结PP’,并延长AP与BC相交于点Q.
(1)求证:△APP’是等腰直角三角形;
5
(2)求∠BPQ的大小;
(3)求CQ的长.
A
B
C
D
P
Q
25.(10分)已知抛物线与x轴交于点A(m-2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x=1.
(1)求抛物线解析式.
(2)直线y=kx+2(k≠0)与抛物线相交于两点M(x1,y1),N(x2,y2)(x1<x2),当 最小时,求抛物线与直线的交点M和N的坐标.
(3)首尾顺次连接点O,B,P,C构成多边形的周长为L.若线段OB在x轴上移动,求L最小值时点O,B移动后的坐标及L的最小值.
O
y
x
l
5