由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年江苏省盐城市滨海县中考数学一模试卷
一、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)比﹣2大3的数是( )
A.﹣3 B.﹣5 C.1 D.2
2.(3分)下列各数中,是有理数的是( )
A. B.π C. D.3.1415926……
3.(3分)下列交通标志中既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
4.(3分)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( )
A.0.675×105 B.6.75×104 C.67.5×103 D.675×102
5.(3分)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )
A.两点确定一条直线
B.两点之间线段最短
C.垂线段最短
D.在同一平面内,过一点有且只有一条直线与已知直线垂直
6.(3分)一组数据为1,5,3,4,5,6,这组数据的众数、中位数分为( )
A.4,5 B.5,4.5 C.5,4 D.3,2
7.(3分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B. C. D.
8.(3分)已知关于x,y的二元一次方程组,若x+y>3,则m的取值范围是( )
A.m>1 B.m<2 C.m>3 D.m>5
二、填空题(本大题共8小题,每小题3分,共24分)
9.(3分)16的平方根是 .
10.(3分)因式分解:xy2﹣4x= .
11.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为 .
12.(3分)实数m、n在数轴上的位置如图所示,则|n﹣m|= .
13.(3分)如图,AB、BC是⊙O的弦,OM∥BC交AB于M,若∠AOC=100°,则∠AMO= °.
14.(3分)中央电视台体育频道用直升机航拍技术全程直播国际马拉松比赛.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为100米,点A、D、B在同一直线上,则A、B两点的距离是 米.(保留根号)
15.(3分)如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
16.(3分)如图,已知点A1、A2、A3、…、An在x轴上,且OA1=A1A2=A2A3=…=An﹣1An=1,分别过点A1、A2、A3、An作x轴的垂线,交反比例函数y=(x>0)的图象于点B1、B2、B3、…、Bn,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2,…,若记△B1P1B2的面积为S1,△B2P2B3的面积为S2,…,△BnPnBn+1的面积为Sn,则S1+S2+…+S2018= .
三、解答题(本大题共11小题,共102分)
17.(6分)计算:﹣4cos45°+()﹣1+|﹣2|.
18.(6分)解不等式组:,并把解集在数轴上表示出来.
19.(8分)化简,求值:÷(m﹣1﹣),其中m=.
20.(8分)如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).
(1)在图中画出△ABC关于原点对称的△A1B1C1;
(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;
(3)在(2)的条件下,求点A运动路径长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
21.(8分)平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.
(1)求证:四边形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.
22.(10分)A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.
(1)随机地从A中抽取一张,求抽到数字为2的概率;
(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
23.(10分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)这次被调查的学生共有 人.
(2)请将统计图2补充完整.
(3)统计图1中B项目对应的扇形的圆心角是 度.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.
24.(10分)已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:∵直线y=3x+7,其中k=3,b=7.
∴点P(﹣1,2)到直线y=3x+7的距离为:
d====.
根据以上材料,解答下列问题:
(1)求点P(﹣1,3)到直线y=x﹣3的距离;
(2)已知⊙Q的圆心Q坐标为(0,3),半径r为3,判断⊙Q与直线y=x+9的位置关系并说明理由;
(3)已知直线y=3x+3与y=3x﹣6平行,求这两条直线之间的距离.
25.(10分)如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.
(1)求证:∠E=∠C;
(2)若⊙O的半径为3,AD=2,试求AE的长;
(3)在(2)的条件下,求△ABC的面积.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26.(12分)已知,正方形ABPD的边长为3,将边DP绕点P顺时针旋转90°至PC,E、F分别为线段DP、CP上两个动点(不与D、P、C重合),且DE=CF,连接BE并延长分别交DF、DC于H、G.
(1)①求证:△BPE≌△DPF,②判断BG与DF位置关系并说明理由;
(2)当PE的长度为多少时,四边形DEFG为菱形并说明理由;
(3)连接AH,在点E、F运动的过程中,∠AHB的大小是否发生改变?若改变,请说出是如何变化的;若不改变,请求出∠AHB的度数.
27.(14分)如图,抛物线y=ax2+bx过A(﹣4,0),B(﹣1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的函数表达式;
(2)写出点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于x轴的下方,当△ABP的面积为15时,求出点P的坐标;
(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时点N的坐标.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
四、解答题(共1小题,满分0分)
28.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.
(1)若BD=BC,证明:sin∠BCD=.
(2)若AB=BC=4,AD+CD=6,求的值.
(3)若BD=CD,AB=6,BC=8,求sin∠BCD的值.
(注:本题可根据需要自己画图并解答)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年江苏省盐城市滨海县中考数学一模试卷
参考答案与试题解析
一、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)比﹣2大3的数是( )
A.﹣3 B.﹣5 C.1 D.2
【解答】解:∵﹣2+3=1,
∴比﹣2大3的数是1.
故选:C.
2.(3分)下列各数中,是有理数的是( )
A. B.π C. D.3.1415926……
【解答】解:是有理数,
故选:C.
3.(3分)下列交通标志中既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
【解答】解:根据轴对称图形与中心对称图形的概念,知:
A:是轴对称图形,而不是中心对称图形;
B、C:两者都不是;
D:既是中心对称图形,又是轴对称图形.
故选:D.
4.(3分)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( )
A.0.675×105 B.6.75×104 C.67.5×103 D.675×102
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:将67500用科学记数法表示为:6.75×104.
故选:B.
5.(3分)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )
A.两点确定一条直线
B.两点之间线段最短
C.垂线段最短
D.在同一平面内,过一点有且只有一条直线与已知直线垂直
【解答】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.
故选:A.
6.(3分)一组数据为1,5,3,4,5,6,这组数据的众数、中位数分为( )
A.4,5 B.5,4.5 C.5,4 D.3,2
【解答】解:这组数据按照从小到大的顺序排列为:1,3,4,5,5,6,
则众数为:5,
中位数为:4.5.
故选:B.
7.(3分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )
A. B. C. D.
【解答】解:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故选:A.
8.(3分)已知关于x,y的二元一次方程组,若x+y>3,则m的取值范围是( )
A.m>1 B.m<2 C.m>3 D.m>5
【解答】解:,
①+②得:4x=4m﹣6,即x=,
①﹣②×3得:4y=﹣2,即y=﹣,
根据x+y>3得:﹣>3,
去分母得:2m﹣3﹣1>6,
解得:m>5.
故选:D.
二、填空题(本大题共8小题,每小题3分,共24分)
9.(3分)16的平方根是 ±4 .
【解答】解:∵(±4)2=16,
∴16的平方根是±4.
故答案为:±4.
10.(3分)因式分解:xy2﹣4x= x(y+2)(y﹣2) .
【解答】解:xy2﹣4x,
=x(y2﹣4),
=x(y+2)(y﹣2).
11.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为 .
【解答】解:∵一个质地均匀的小正方体有6个面,其中标有数字5的有2个,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.
故答案为:.
12.(3分)实数m、n在数轴上的位置如图所示,则|n﹣m|= m﹣n .
【解答】解:如图可得:n<m,
即n﹣m<0,
则|n﹣m|=﹣(n﹣m)=m﹣n.
故答案为:m﹣n.
13.(3分)如图,AB、BC是⊙O的弦,OM∥BC交AB于M,若∠AOC=100°,则∠AMO= 50 °.
【解答】解:∵∠AOC=2∠B,∠AOC=100°,
∴∠B=50°,
∵OM∥BC,
∴∠AMO=∠B=50°,
故答案为:50.
14.(3分)中央电视台体育频道用直升机航拍技术全程直播国际马拉松比赛.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为100米,点A、D、B在同一直线上,则A、B两点的距离是 (100+100) 米.(保留根号)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:由已知,得∠A=30°,∠B=45°,CD=100m,
∵CD⊥AB于点D.
∴在Rt△ACD中,∠CDA=90°,tanA=,
∴AD==100(m),
在Rt△BCD中,∠CDB=90°,∠B=45°
∴DB=CD=100m,
∴AB=AD+DB=100(+1)m,
故答案为:100+100.
15.(3分)如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为 y=﹣x+1 .
【解答】解:如图,过C作CD⊥x轴于点D,
∵∠CAB=90°,
∴∠DAC+∠BAO=∠BAO+∠ABO=90°,
∴∠DAC=∠ABO,
在△AOB和△CDA中
,
∴△AOB≌△CDA(AAS),
∵A(﹣2,0),B(0,1),
∴AD=BO=1,CD=AO=2,
∴C(﹣3,2),
设直线BC解析式为y=kx+b,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴,解得,
∴直线BC解析式为y=﹣x+1,
故答案为:y=﹣x+1.
16.(3分)如图,已知点A1、A2、A3、…、An在x轴上,且OA1=A1A2=A2A3=…=An﹣1An=1,分别过点A1、A2、A3、An作x轴的垂线,交反比例函数y=(x>0)的图象于点B1、B2、B3、…、Bn,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2,…,若记△B1P1B2的面积为S1,△B2P2B3的面积为S2,…,△BnPnBn+1的面积为Sn,则S1+S2+…+S2018= .
【解答】解:根据题意可知:点B1(1,2)、B2(2,1)、B3(3,)、…、Bn(n,),
∴B1P1=2﹣1=1,B2P2=1﹣=,B3P3=﹣=,…,BnPn=﹣=,
∴Sn=AnAn+1•BnPn=,
∴S1+S2+…+S2018=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故答案为:.
三、解答题(本大题共11小题,共102分)
17.(6分)计算:﹣4cos45°+()﹣1+|﹣2|.
【解答】解:原式=2﹣4×+2+2
=4.
18.(6分)解不等式组:,并把解集在数轴上表示出来.
【解答】解:由①得x≥4,
由②得x<1,
∴原不等式组无解,
19.(8分)化简,求值: ÷(m﹣1﹣),其中m=.
【解答】解:÷(m﹣1﹣)
=•
=•
=,
当m=时,原式=.
20.(8分)如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).
(1)在图中画出△ABC关于原点对称的△A1B1C1;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;
(3)在(2)的条件下,求点A运动路径长.
【解答】解:解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作;
(3)OA=,
∴点A运动路径长=.
21.(8分)平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.
(1)求证:四边形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴DF∥BE,
∵CF=AE,
∴DF=BE,
∴四边形BFDE是平行四边形,
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形.
(2)∵AB∥CD,
∴∠BAF=∠AFD,
∵AF平分∠BAD,
∴∠DAF=∠AFD,
∴AD=DF,
在Rt△ADE中,∵AE=3,DE=4,
∴AD==5,
∴矩形的面积为20.
22.(10分)A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.
(1)随机地从A中抽取一张,求抽到数字为2的概率;
(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)P=;
(2)由题意画出树状图如下:
一共有6种情况,
甲获胜的情况有4种,P==,
乙获胜的情况有2种,P==,
所以,这样的游戏规则对甲乙双方不公平.
23.(10分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)这次被调查的学生共有 500 人.
(2)请将统计图2补充完整.
(3)统计图1中B项目对应的扇形的圆心角是 54 度.
(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.
【解答】解:(1)140÷28%=500(人),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故答案为:500;
(2)A的人数:500﹣75﹣140﹣245=40(人);
补全条形图如图:
(3)75÷500×100%=15%,
360°×15%=54°,
故答案为:54;
(4)245÷500×100%=49%,
3600×49%=1764(人).
24.(10分)已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:∵直线y=3x+7,其中k=3,b=7.
∴点P(﹣1, 2)到直线y=3x+7的距离为:
d====.
根据以上材料,解答下列问题:
(1)求点P(﹣1,3)到直线y=x﹣3的距离;
(2)已知⊙Q的圆心Q坐标为(0,3),半径r为3,判断⊙Q与直线y=x+
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
9的位置关系并说明理由;
(3)已知直线y=3x+3与y=3x﹣6平行,求这两条直线之间的距离.
【解答】解:(1)∵直线y=x﹣3,其中k=1,b=﹣3,
∴点P(﹣1,3)到直线y=x﹣3的距离为d===;
(2)⊙Q与直线y=x+9相切,
理由:∵直线y=x+9,其中k=,b=9,
∴圆心Q(0,3)到直线y=x+9的距离为d===3,
∵⊙Q的半径r=3,
∴d=r,
∴⊙Q与直线y=x+9相切;
(3)当x=0时,y=3x+3=3,
∴点(0,3)在直线y=3x+3,
∵点(0,3)到直线y=3x﹣6的距离为d===,
∵直线y=3x+3与直线y=3x﹣6平行,
∴这两条直线之间的距离为.
25.(10分)如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.
(1)求证:∠E=∠C;
(2)若⊙O的半径为3,AD=2,试求AE的长;
(3)在(2)的条件下,求△ABC的面积.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)证明:如图1:连接OB.
∵CD为圆O的直径,
∴∠CBD=∠CBO+∠OBD=90°.
∵AE是圆O的切线,
∴∠ABO=∠ABD+∠OBD=90°.
∴∠ABD=∠CBO.
∵OB=OC,
∴∠C=∠CBO.
∴∠C=∠ABD.
∵OE∥BD,
∴∠E=∠ABD.
∴∠E=∠C;
(2)解:∵⊙O的半径为3,AD=2,
∴AO=5,∴AB=4.
∵BD∥OE,
∴,即,
∴AE=10;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)∵S△AOE=AE•OB=15,
∵∠C=∠E,∠A=∠A,
∴△AOE∽△ABC,
∴=()2=,
∴S△ABC=15×=.
26.(12分)已知,正方形ABPD的边长为3,将边DP绕点P顺时针旋转90°至PC,E、F分别为线段DP、CP上两个动点(不与D、P、C重合),且DE=CF,连接BE并延长分别交DF、DC于H、G.
(1)①求证:△BPE≌△DPF,②判断BG与DF位置关系并说明理由;
(2)当PE的长度为多少时,四边形DEFG为菱形并说明理由;
(3)连接AH,在点E、F运动的过程中,∠AHB的大小是否发生改变?若改变,请说出是如何变化的;若不改变,请求出∠AHB的度数.
【解答】(1)①证明:由旋转的性质可知,△DPC是等腰直角三角形,
∵四边形ABPD是正方形,
∴BP=PD=PC,∠BPE=∠DPF=90°,
∵DE=CF,
∴PE=PF,
在△BPE和△DPF中,
,
∴△BPE≌△DPF;
②∵△BPE≌△DPF,
∴∠EBP=∠FDP,又∠FDP+∠BFH=90°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠EBP+∠BFH=90°,即BG⊥DF;
(2)当PE=3﹣3时,四边形DEFG为菱形;
理由如下:在正方形ABPD中,BP=PD=3,
∵PE=3﹣3,
∴EF==6﹣3,
DE=PD﹣PE=6﹣3,
∴EF=ED,
∵BG⊥DF,
∴EG垂直平分DF,
∴GD=GF,
∵∠PEF=∠PDC=45°,
∴EF∥DG,
∴∠EFD=∠FDG,
∵DE=EF,
∴∠EFD=∠EDF,
∴∠EDG=∠FDE,
∵BG⊥DF,
∴∠DEG=∠DGE,
∴DE=DG,
∴DE=DG=GF=EF,
∴四边形DEFG是菱形;
(3)∠AHB的大小不变,∠AHB=45°,
证明:连接BD,取BD的中点O,连接OA、OH,
∵四边形ABCD是正方形,
∴∠BAD=90°,∠ADB=45°,
∵BG⊥DF,
∴∠DHB=90°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
则OA=OB=OD=OH=BD,
∴点A、B、H、D在以O为圆心、OA为半径的圆上,
∴∠AHB=∠ADB=45°.
27.(14分)如图,抛物线y=ax2+bx过A(﹣4,0),B(﹣1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的函数表达式;
(2)写出点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于x轴的下方,当△ABP的面积为15时,求出点P的坐标;
(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时点N的坐标.
【解答】解:(1)把点A(﹣4,0),B(﹣1,3)代入抛物线y=ax2+bx中,
得,
解得,
∴抛物线表达式为y=﹣x2﹣4x;
(2)∵y=﹣x2+4x=﹣(x+2)2+4,
∴抛物线对称轴为x=﹣2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵点C和点B关于对称轴对称,点B的坐标为(﹣1,3),
∴C(﹣3,3),
∴BC=2,
∴S△ABC=×2×3=3;
(3)如图,过P点作PF垂直x轴,交直线AB于点F,
∵A(﹣4,0),B(﹣1,3),
设直线AB的解析式为y=kx+b,
则,
解得,
即直线AB的解析式为y=x+4,
设点P(m,﹣m2﹣4m),则F(m,m+4),
∴PF=m+4+m2+4m=m2+5m+4.
∴S△PAB=×(m2+5m+4)×3=15,
m2+5m﹣6=0,
解得m1=﹣6,m2=1,
∴点P坐标为(﹣6,﹣12)或(1,﹣5);
(4)以点C、M、N为顶点的三角形为等腰直角三角形时,分三类情况讨论:
①以点M为直角顶点且M在x轴上方时,如图2,CM=MN,∠CMN=90°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
则△CBM≌△MHN,
∴BC=MH=2,BM=HN=3﹣2=1,
∴N(﹣2,0);
②以点M为直角顶点且M在x轴下方时,如图3,
作辅助线,构建如图所示的两直角三角形:Rt△NEM和Rt△MDC,
得Rt△NEM≌Rt△MDC,
∴EM=CD=5,
∵OH=1,
∴ON=NH﹣OH=5﹣1=4,
∴N(4,0);
③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,作辅助线,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
同理得Rt△NEM≌Rt△MDC,
∴ME=NH=DN=3,
∴ON=3﹣1=2,
∴N(﹣2,0);
④以点N为直角顶点且N在y轴右侧时,作辅助线,如图5,
同理得ME=DN=NH=3,
∴ON=1+3=4,
∴N(﹣4,0);
⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;
综上可知当△CMN为等腰直角三角形时N点坐标为(2,0)或(﹣4,0)或(﹣2,0)或(4,0).
四、解答题(共1小题,满分0分)
28.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
BCD是锐角.
(1)若BD=BC,证明:sin∠BCD=.
(2)若AB=BC=4,AD+CD=6,求的值.
(3)若BD=CD,AB=6,BC=8,求sin∠BCD的值.
(注:本题可根据需要自己画图并解答)
【解答】解:(1)如图1中,过点B作AD的垂线BE交DA的延长线于点E,
∵∠ABC=∠ADC=90°,
∴∠ADC+∠ABC=180°,
∴四边形ABCD四点共圆,
∴∠BDE=∠ACB,∠EAB=∠BCD,
∵∠BED=∠ABC=90°,
∴△BED∽△ABC,
∴==sin∠EAB=sin∠BCD;
(2)如图2中,过点B作BF⊥BD交DC的延长线于F.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵∠ABC=∠DBF=90°,∠BAD+∠BCD+∠ABC+∠ADC=360°,∠ABC+∠ADC=180°,
∴∠BAD=180°﹣∠BCD=∠BCF,
∵∠BCF=∠BAD,BC=BA,
∴△DAB≌△CBF,
∴BD=BF,AD=CF,
∵∠DBF=90°,
∴△BDF是等腰直角三角形,
∴BD=DF,
∵AD+CD=6,
∴CF+CD=DF=6,
∴BD=3,AC==4,
∴==.
(3)当BD=CD时,如图3中,过点B作MN∥DC,过点C作CN⊥MN,垂足为N,延长DA交MN于点M,则四边形DCNM是矩形,△ABM∽△BCN,
∴===,
设AM=6y,BN=8y,BM=6x,CN=8x,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
在Rt△BDM中,BD==10x,
∵BD=DC,
∴10x=6x+8y,
∴x=2y,
在Rt△DABM中,AB==6y,
∴sin∠BCD=sin∠MAB===.
由莲山课件提供http://www.5ykj.com/ 资源全部免费