【真题】2018年天津市高考数学(文科)试题(含答案和解析)
加入VIP免费下载

本文件来自资料包: 《【真题】2018年天津市高考数学(文科)试题(含答案和解析)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 绝密★启用前 ‎2018年普通高等学校招生全国统一考试(天津卷)‎ 数学(文史类)‎ 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。‎ 答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。‎ 祝各位考生考试顺利!‎ 第Ⅰ卷 注意事项:‎ ‎1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。‎ ‎2.本卷共8小题,每小题5分,共40分。‎ 参考公式:‎ ‎·如果事件 A,B 互斥,那么 P(A∪B)=P(A)+P(B). ‎ ‎·棱柱的体积公式V=Sh. 其中S表示棱柱的底面面积,h表示棱柱的高.‎ ‎·棱锥的体积公式,其中表示棱锥的底面积,h表示棱锥的高.‎ 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1. 设集合,,,则 A. B. ‎ C. D. ‎ ‎【答案】C ‎【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果.‎ 详解:由并集的定义可得:,‎ 结合交集的定义可知:.‎ 本题选择C选项.‎ 点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2. 设变量满足约束条件则目标函数的最大值为 A. 6 B. 19‎ C. 21 D. 45‎ ‎【答案】C ‎【解析】分析:由题意首先画出可行域,然后结合目标函数的解析式整理计算即可求得最终结果.‎ 详解:绘制不等式组表示的平面区域如图所示,‎ 结合目标函数的几何意义可知目标函数在点A处取得最大值,‎ 联立直线方程:,可得点A的坐标为:,‎ 据此可知目标函数的最大值为:.‎ 本题选择C选项.‎ ‎3. 设,则“”是“” 的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 ‎【答案】A ‎【解析】分析:求解三次不等式和绝对值不等式,据此即可确定两条件的充分性和必要性是否成立即可.‎ 详解:求解不等式可得,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 求解绝对值不等式可得或,‎ 据此可知:“”是“” 的充分而不必要条件.‎ 本题选择A选项.‎ 点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.‎ ‎4. 阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为 A. 1 B. 2 C. 3 D. 4‎ ‎【答案】B ‎【解析】分析:由题意结合流程图运行程序即可求得输出的数值.‎ 详解:结合流程图运行程序如下:‎ 首先初始化数据:,‎ ‎,结果为整数,执行,,此时不满足;‎ ‎,结果不为整数,执行,此时不满足;‎ ‎,结果为整数,执行,,此时满足;‎ 跳出循环,输出.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 本题选择B选项.‎ 点睛:识别、运行程序框图和完善程序框图的思路:‎ ‎(1)要明确程序框图的顺序结构、条件结构和循环结构.‎ ‎(2)要识别、运行程序框图,理解框图所解决的实际问题.‎ ‎(3)按照题目的要求完成解答并验证.‎ ‎5. 已知,则的大小关系为 A. B. C. D. ‎ ‎【答案】D ‎【解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.‎ 详解:由题意可知:,即,‎ ‎,即,‎ ‎,即,‎ 综上可得:.‎ 本题选择D选项.‎ 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.‎ ‎6. 将函数的图象向右平移个单位长度,所得图象对应的函数 A. 在区间 上单调递增 B. 在区间 上单调递减 C. 在区间 上单调递增 D. 在区间 上单调递减 ‎【答案】A ‎【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.‎ 详解:由函数图象平移变换的性质可知:‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 将的图象向右平移个单位长度之后的解析式为:‎ ‎.‎ 则函数的单调递增区间满足:,‎ 即,‎ 令可得函数的一个单调递增区间为,选项A正确,B错误;‎ 函数的单调递减区间满足:,‎ 即,‎ 令可得函数的一个单调递减区间为,选项C,D错误;‎ 本题选择A选项.‎ 点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.‎ ‎7. 已知双曲线 的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且 则双曲线的方程为 A. B. ‎ C. D. ‎ ‎【答案】A ‎【解析】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后求解a的值即可确定双曲线方程.‎ 详解:设双曲线的右焦点坐标为(c>0),则,‎ 由可得:,‎ 不妨设:,双曲线的一条渐近线方程为,‎ 据此可得:,,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 则,则,‎ 双曲线的离心率:,‎ 据此可得:,则双曲线的方程为.‎ 本题选择A选项.‎ 点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.‎ ‎8. 在如图的平面图形中,已知,则的值为 A. B. ‎ C. D. 0‎ ‎【答案】C ‎【解析】分析:连结MN,结合几何性质和平面向量的运算法则整理计算即可求得最终结果.‎ 详解:如图所示,连结MN,‎ 由 可知点分别为线段上靠近点的三等分点,‎ 则,‎ 由题意可知:‎ ‎,,‎ 结合数量积的运算法则可得:‎ ‎.‎ 本题选择C选项.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.‎ 第Ⅱ卷 注意事项:‎ ‎1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。‎ ‎2.本卷共12小题,共110分。‎ 二.填空题:本大题共6小题,每小题5分,共30分.‎ ‎9. i是虚数单位,复数___________.‎ ‎【答案】4–i ‎ ‎【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.‎ 详解:由复数的运算法则得:.‎ 点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.‎ ‎10. 已知函数f(x)=exlnx,为f(x)的导函数,则的值为__________.‎ ‎【答案】e ‎【解析】分析:首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果.‎ 详解:由函数的解析式可得:,‎ 则:.即的值为e.‎ 点睛:本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.‎ ‎11. 如图,已知正方体ABCD–A1B1C1D1的棱长为1,则四棱柱A1–BB1D1D的体积为__________.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【答案】‎ ‎【解析】分析:由题意分别求得底面积和高,然后求解其体积即可.‎ 详解:如图所示,连结,交于点,很明显平面,‎ 则是四棱锥的高,且,‎ ‎,‎ 结合四棱锥体积公式可得其体积为:.‎ 点睛:本题主要考查棱锥体积的计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.‎ ‎12. 在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.‎ ‎【答案】‎ ‎【解析】分析:由题意利用待定系数法求解圆的方程即可.‎ 详解:设圆的方程为,‎ 圆经过三点(0,0),(1,1),(2,0),则:‎ ‎,解得:,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 则圆的方程为.‎ 点睛:求圆的方程,主要有两种方法:‎ ‎(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.‎ ‎(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.‎ ‎13. 已知a,b∈R,且a–3b+6=0,则2a+的最小值为__________.‎ ‎【答案】‎ ‎【解析】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.‎ 详解:由可知,‎ 且:,因为对于任意x,恒成立,‎ 结合均值不等式的结论可得:.‎ 当且仅当,即时等号成立.‎ 综上可得的最小值为.‎ 点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.‎ ‎14. 已知a∈R,函数若对任意x∈[–3,+),f(x)≤恒成立,则a的取值范围是__________.‎ ‎【答案】[,2]‎ ‎【解析】分析:由题意分类讨论和两种情况,结合恒成立的条件整理计算即可求得最终结果.‎ 详解:分类讨论:①当时,即:,‎ 整理可得:,‎ 由恒成立的条件可知:,‎ 结合二次函数的性质可知:‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 当时,,则;‎ ‎②当时,即:,整理可得:,‎ 由恒成立的条件可知:,‎ 结合二次函数的性质可知:‎ 当或时,,则;‎ 综合①②可得的取值范围是.‎ 点睛:对于恒成立问题,常用到以下两个结论:(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.‎ 三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.‎ ‎15. 已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.‎ ‎(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?‎ ‎(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.‎ ‎(i)试用所给字母列举出所有可能的抽取结果;‎ ‎(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.‎ ‎【答案】(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人;(Ⅱ)(i)答案见解析;(ii).‎ ‎【解析】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.‎ ‎(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.‎ ‎(ii)由题意结合(i)中的结果和古典概型计算公式可得事件M发生的概率为P(M)=.‎ 详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.‎ ‎(Ⅱ)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为 ‎{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 种.‎ ‎(ii)由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.‎ 所以,事件M发生的概率为P(M)=.‎ 点睛:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.‎ ‎16. 在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B–).‎ ‎(Ⅰ)求角B的大小;‎ ‎(Ⅱ)设a=2,c=3,求b和sin(2A–B)的值.‎ ‎【答案】(Ⅰ)B=;(Ⅱ)b=, ‎ ‎【解析】分析:(Ⅰ)由正弦定理有,结合,可得.则B=.‎ ‎(Ⅱ)在△ABC中,由余弦定理可得b=.则..结合两角差的正弦公式可得 ‎ 详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.‎ ‎(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.‎ 由,可得.因为a1时,=0,解得x1=,x2=.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 易得,g(x)在(−∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增.‎ g(x)的极大值g(x1)=g()=>0.‎ g(x)的极小值g(x2)=g()=−.‎ 若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.‎ 若即,也就是,此时,且,从而由的单调性,可知函数在区间内各有一个零点,符合题意.‎ 所以,的取值范围是.‎ 点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料