第一章 解三角形
§1.1 正弦定理和余弦定理
1.1.1 正弦定理(一)
课时目标
1.熟记正弦定理的内容;
2.能够初步运用正弦定理解斜三角形.
1.在△ABC中,A+B+C=π,++=.
2.在Rt△ABC中,C=,则=sin_A,=sin_B.
3.一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.
4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即==,这个比值是三角形外接圆的直径2R.
一、选择题
1.在△ABC中,角A,B,C的对边分别是a,b,c,若A∶B∶C=1∶2∶3,则
a∶b∶c等于( )
A.1∶2∶3 B.2∶3∶4
C.3∶4∶5 D.1∶∶2
答案 D
2.若△ABC中,a=4,A=45°,B=60°,则边b的值为( )
A.+1 B.2+1
C.2 D.2+2
答案 C
解析 由正弦定理=,
得=,∴b=2.
3.在△ABC中,sin2A=sin2B+sin2C,则△ABC为( )
A.直角三角形 B.等腰直角三角形
C.等边三角形 D.等腰三角形
答案 A
解析 sin2A=sin2B+sin2C⇔(2R)2sin2A=(2R)2sin2B+(2R)2sin2C,即a2=b2+c2,由勾股定理的逆定理得△ABC为直角三角形.
4.在△ABC中,若sin A>sin B,则角A与角B的大小关系为( )
A.A>B B.Asin B⇔2Rsin A>2Rsin B⇔a>b⇔A>B.
5.在△ABC中,A=60°,a=,b=,则B等于( )
A.45°或135° B.60°
C.45° D.135°
答案 C
解析 由=得sin B=
==.
∵a>b,∴A>B,B