余弦定理(一)作业题含详解解析(必修五人教版)
加入VIP免费下载

本文件来自资料包: 《余弦定理(一)作业题含详解解析(必修五人教版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎1.1.2 余弦定理(一)‎ 课时目标 ‎1.熟记余弦定理及其推论;‎ ‎2.能够初步运用余弦定理解斜三角形.‎ ‎1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=b2+c2-2bccos_A,b2=c2+a2-2cacos_B,c2=a2+b2-2abcos_C.‎ ‎2.余弦定理的推论 cos A=;cos B=;cos C=.‎ ‎3.在△ABC中:‎ ‎(1)若a2+b2-c2=0,则C=90°;‎ ‎(2)若c2=a2+b2-ab,则C=60°;‎ ‎(3)若c2=a2+b2+ab,则C=135°.‎ 一、选择题 ‎1.在△ABC中,已知a=1,b=2,C=60°,则c等于(  )‎ A. B.3‎ C. D.5‎ 答案 A ‎2.在△ABC中,a=7,b=4,c=,则△ABC的最小角为(  )‎ A. B. C. D. 答案 B 解析 ∵a>b>c,∴C为最小角,‎ 由余弦定理cos C= ‎==.∴C=.‎ ‎3.在△ABC中,已知a=2,则bcos C+ccos B等于(  )‎ A.1 B. C.2 D.4‎ 答案 C 解析 bcos C+ccos B=b·+c·==a=2.‎ ‎4.在△ABC中,已知b2=ac且c=‎2a,则cos B等于(  )‎ A. B. C. D. 答案 B 解析 ∵b2=ac,c=‎2a,∴b2=‎2a2,b=a,‎ ‎∴cos B===.‎ ‎5.在△ABC中,sin2= (a,b,c分别为角A,B,C的对应边),则△ABC的形状为(  )‎ A.正三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形 答案 B 解析 ∵sin2==,‎ ‎∴cos A==⇒a2+b2=c2,符合勾股定理.‎ 故△ABC为直角三角形.‎ ‎6.在△ABC中,已知面积S=(a2+b2-c2),则角C的度数为(  )‎ A.135° B.45° C.60° D.120°‎ 答案 B 解析 ∵S=(a2+b2-c2)=absin C,‎ ‎∴a2+b2-c2=2absin C,∴c2=a2+b2-2absin C.‎ 由余弦定理得:c2=a2+b2-2abcos C,‎ ‎∴sin C=cos C,‎ ‎∴C=45° .‎ 二、填空题 ‎7.在△ABC中,若a2-b2-c2=bc,则A=________.‎ 答案 120°‎ ‎8.△ABC中,已知a=2,b=4,C=60°,则A=________.‎ 答案 30°‎ 解析 c2=a2+b2-2abcos C ‎=22+42-2×2×4×cos 60°‎ ‎=12‎ ‎∴c=2.‎ 由正弦定理:=得sin A=.‎ ‎∵a0),则最大角为________.‎ 答案 120°‎ 解析 易知:>a,>b,设最大角为θ,‎ 则cos θ==-,‎ ‎∴θ=120°.‎ ‎10.在△ABC中,BC=1,B=,当△ABC的面积等于时,tan C=________.‎ 答案 -2 解析 S△ABC=acsin B=,∴c=4.由余弦定理得,b2=a2+c2-2accos B=13,‎ ‎∴cos C==-,sin C=,‎ ‎∴tan C=-=-2.‎ 三、解答题 ‎11.在△ABC中,已知CB=7,AC=8,AB=9,试求AC边上的中线长.‎ 解 由条件知:cos A===,设中线长为x,由余弦定理知:x ‎2=2+AB2-2··ABcos A=42+92-2×4×9×=49‎ ‎⇒x=7.‎ 所以,所求中线长为7.‎ ‎12.在△ABC中,BC=a,AC=b,且a,b是方程x2-2x+2=0的两根,2cos(A+B)=1.‎ ‎(1)求角C的度数;‎ ‎(2)求AB的长;‎ ‎(3)求△ABC的面积.‎ 解 (1)cos C=cos[π-(A+B)]‎ ‎=-cos(A+B)=-,‎ 又∵C∈(0°,180°),∴C=120°.‎ ‎(2)∵a,b是方程x2-2x+2=0的两根,‎ ‎∴ ‎∴AB2=b2+a2-2abcos 120°=(a+b)2-ab=10,‎ ‎∴AB=.‎ ‎(3)S△ABC=absin C=.‎ 能力提升 ‎13.(2010·潍坊一模)在△ABC中,AB=2,AC=,BC=1+,AD为边BC上的高,则AD的长是________.‎ 答案  解析 ∵cos C==,‎ ‎∴sin C=.‎ ‎∴AD=AC·sin C=.‎ ‎14.在△ABC中,acos A+bcos B=ccos C,试判断三角形的形状.‎ 解 由余弦定理知 cos A=,cos B=,‎ cos C=,‎ 代入已知条件得 a·+b·+c·=0,‎ 通分得a2(b2+c2-a2)+b2(a2+c2-b2)+c2(c2-a2-b2)=0,‎ 展开整理得(a2-b2)2=c4.‎ ‎∴a2-b2=±c2,即a2=b2+c2或b2=a2+c2.‎ 根据勾股定理知△ABC是直角三角形.‎ ‎1.利用余弦定理可以解决两类有关三角形的问题:‎ ‎(1)已知两边和夹角,解三角形.‎ ‎(2)已知三边求三角形的任意一角.‎ ‎2.余弦定理与勾股定理 余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料