第二章 数 列
§2.1 数列的概念与简单表示法(一)
课时目标
1.理解数列及其有关概念;
2.理解数列的通项公式,并会用通项公式写出数列的任意一项;
3.对于比较简单的数列,会根据其前n项写出它的通项公式.
1.按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,…,排在第n位的数称为这个数列的第n项.
2.数列的一般形式可以写成a1,a2,…,an,…,简记为{an}.
3.项数有限的数列称有穷数列,项数无限的数列叫做无穷数列.
4.如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.
一、选择题
1.数列2,3,4,5,…的一个通项公式为( )
A.an=n B.an=n+1
C.an=n+2 D.an=2n
答案 B
2.已知数列{an}的通项公式为an=,则该数列的前4项依次为( )
A.1,0,1,0 B.0,1,0,1
C.,0,,0 D.2,0,2,0
答案 A
3.若数列的前4项为1,0,1,0,则这个数列的通项公式不可能是( )
A.an=[1+(-1)n-1]
B.an=[1-cos(n·180°)]
C.an=sin2(n·90°)
D.an=(n-1)(n-2)+[1+(-1)n-1]
答案 D
解析 令n=1,2,3,4代入验证即可.
4.已知数列{an}的通项公式为an=n2-n-50,则-8是该数列的( )
A.第5项 B.第6项
C.第7项 D.非任何一项
答案 C
解析 n2-n-50=-8,得n=7或n=-6(舍去).
5.数列1,3,6,10,…的一个通项公式是( )
A.an=n2-n+1 B.an=
C.an= D.an=n2+1
答案 C
解析 令n=1,2,3,4,代入A、B、C、D检验即可.排除A、B、D,从而选C.
6.设an=+++…+ (n∈N*),那么an+1-an等于( )
A. B.
C.+ D.-
答案 D
解析 ∵an=+++…+
∴an+1=++…+++,
∴an+1-an=+-=-.
二、填空题
7.已知数列{an}的通项公式为an=.则它的前4项依次为____________.
答案 4,7,10,15
8.已知数列{an}的通项公式为an=(n∈N*),那么是这个数列的第______项.
答案 10
解析 ∵=,
∴n(n+2)=10×12,∴n=10.
9.用火柴棒按下图的方法搭三角形:
按图示的规律搭下去,则所用火柴棒数an与所搭三角形的个数n之间的关系式可以是______________.
答案 an=2n+1
解析 a1=3,a2=3+2=5,a3=3+2+2=7,a4=3+2+2+2=9,…,∴an=2n+1.
10.传说古希腊毕达哥拉斯(Pythagoras,约公元前570年—公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图所示的三角形状,就将其所对应石子个数称为三角形数,则第10个三角形数是______.
答案 55
解析 三角形数依次为:1,3,6,10,15,…,第10个三角形数为:1+2+3+4+…+10=55.
三、解答题
11.根据数列的前几项,写出下列各数列的一个通项公式:
(1)-1,7,-13,19,…
(2)0.8,0.88,0.888,…
(3),,-,,-,,…
(4),1,,,…
(5)0,1,0,1,…
解 (1)符号问题可通过(-1)n或(-1)n+1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为an=(-1)n(6n-5)(n∈N*).
(2)数列变形为(1-0.1),(1-0.01),
(1-0.001),…,∴an=(n∈N*).
(3)各项的分母分别为21,22,23,24,…易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-,因此原数列可化为-,,-,,…,
∴an=(-1)n·(n∈N*).
(4)将数列统一为,,,,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为bn=2n+1,对于分母2,5,10,17,…联想到数列1,4,9,16…即数列{n2},可得分母的通项公式为cn=n2+1,
∴可得它的一个通项公式为an=(n∈N*).
(5)an=或an=(n∈N*)
或an=(n∈N*).
12.已知数列;
(1)求这个数列的第10项;
(2)是不是该数列中的项,为什么?
(3)求证:数列中的各项都在区间(0,1)内;
(4)在区间内有、无数列中的项?若有,有几项?若没有,说明理由.
(1)解 设f(n)=
==.
令n=10,得第10项a10=f(10)=.
(2)解 令=,得9n=300.
此方程无正整数解,所以不是该数列中的项.
(3)证明 ∵an===1-,
又n∈N*,∴0