§2.2 等差数列(二)
课时目标
1.进一步熟练掌握等差数列的通项公式.
2.熟练运用等差数列的常用性质.
1.等差数列的通项公式an=a1+(n-1)d,当d=0时,an是关于n的常函数;当d≠0时,an是关于n的一次函数;点(n,an)分布在以d为斜率的直线上,是这条直线上的一列孤立的点.
2.已知在公差为d的等差数列{an}中的第m项am和第n项an(m≠n),则=d.
3.对于任意的正整数m、n、p、q,若m+n=p+q.则在等差数列{an}中,am+an与
ap+aq之间的关系为am+an=ap+aq.
一、选择题
1.在等差数列{an}中,若a2+a4+a6+a8+a10=80,则a7-a8的值为( )
A.4 B.6
C.8 D.10
答案 C
解析 由a2+a4+a6+a8+a10=5a6=80,
∴a6=16,∴a7-a8=(2a7-a8)
=(a6+a8-a8)=a6=8.
2.已知数列{an}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为( )
A. B.±
C.- D.-
答案 D
解析 由等差数列的性质得a1+a7+a13=3a7=4π,
∴a7=.
∴tan(a2+a12)=tan(2a7)=tan
=tan=-.
3.已知等差数列{an}的公差为d(d≠0),且a3+a6+a10+a13=32,若am=8,则m为( )
A.12 B.8
C.6 D.4
答案 B
解析 由等差数列性质a3+a6+a10+a13=(a3+a13)+(a6+a10)=2a8+2a8=4a8=32,
∴a8=8,又d≠0,
∴m=8.
4.如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7等于( )
A.14 B.21
C.28 D.35
答案 C
解析 ∵a3+a4+a5=3a4=12,
∴a4=4.∴a1+a2+a3+…+a7=(a1+a7)+(a2+a6)+(a3+a5)+a4=7a4=28.
5.设公差为-2的等差数列{an},如果a1+a4+a7+…+a97=50,那么a3+a6+a9+…+a99等于( )
A.-182 B.-78
C.-148 D.-82
答案 D
解析 a3+a6+a9+…+a99
=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)
=(a1+a4+…+a97)+2d×33
=50+2×(-2)×33
=-82.
6.若数列{an}为等差数列,ap=q,aq=p(p≠q),则ap+q为( )
A.p+q B.0
C.-(p+q) D.
答案 B
解析 ∵d===-1,
∴ap+q=ap+qd=q+q×(-1)=0.
二、填空题
7.若{an}是等差数列,a15=8,a60=20,则a75=________.
答案 24
解析 ∵a60=a15+45d,∴d=,
∴a75=a60+15d=20+4=24.
8.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=________.
答案 1
解析 ∵a1+a3+a5=105,∴3a3=105,a3=35.
∴a2+a4+a6=3a4=99.
∴a4=33,∴d=a4-a3=-2.
∴a20=a4+16d=33+16×(-2)=1.
9.已知是等差数列,且a4=6,a6=4,则a10=______.
答案
解析 -=-=2d,即d=.
所以=+4d=+=,所以a10=.
10.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则
|m-n|=________.
答案
解析 由题意设这4个根为,+d,+2d,+3d.
则+=2,∴d=,∴这4个根依次为,,,,
∴n=×=,
m=×=或n=,m=,
∴|m-n|=.
三、解答题
11.等差数列{an}的公差d≠0,试比较a4a9与a6a7的大小.
解 设an=a1+(n-1)d,
则a4a9-a6a7=(a1+3d)(a1+8d)-(a1+5d)(a1+6d)
=(a+11a1d+24d2)-(a+11a1d+30d2)
=-6d2