必修五第二章数列练习题1(人教版有解析)
加入VIP免费下载

本文件来自资料包: 《必修五第二章数列练习题1(人教版有解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
习题课(1)‎ 课时目标 ‎1.熟练掌握等差数列的概念、通项公式、前n项和公式,并能综合运用这些知识解决一些问题.‎ ‎2.熟练掌握等差数列的性质、等差数列前n项和的性质,并能综合运用这些性质解决相关问题.‎ 要点回顾 ‎1.若Sn是数列{an}的前n项和,则Sn=a1+a2+…+an,an= ‎2.若数列{an}为等差数列,则有:‎ ‎(1)通项公式:an=a1+(n-1)d;‎ ‎(2)前n项和:Sn=na1+=.‎ ‎3.等差数列的常用性质 ‎(1)若{an}为等差数列,且m+n=p+q(m,n,p,q∈N*),则am+an=ap+aq.‎ ‎(2)若Sn表示等差数列{an}的前n项和,则 Sk,S2k-Sk,S3k-S2k成等差数列.‎ ‎                  ‎ 一、选择题 ‎1.在等差数列{an}中,a1+‎3a8+a15=120,则‎2a9-a10的值为(  )‎ A.24 B.22‎ C.20 D.-8‎ 答案 A ‎2.等差数列{an}的前n项和为Sn,若a3+a7+a11=6,则S13等于(  )‎ A.24 B.25‎ C.26 D.27 ‎ 答案 C 解析 ∵a3+a7+a11=6,∴a7=2,‎ ‎∴S13==‎13a7=26.‎ ‎3.设数列{an}、{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于(  )‎ A.0 B.37‎ C.100 D.-37‎ 答案 C 解析 设数列{an},{bn}的公差分别为d,d′,‎ 则a2+b2=(a1+d)+(b1+d′)‎ ‎=(a1+b1)+(d+d′)‎ ‎=100.‎ 又∵a1+b1=100,∴d+d′=0.‎ ‎∴a37+b37=(a1+36d)+(b1+36d′)‎ ‎=(a1+b1)+36(d+d′)=100.‎ ‎4.设{an}是公差为正数的等差数列,若a1+a2+a3=15,a‎1a‎2a3=80,则a11+a12+a13等于(  )‎ A.120 B.105‎ C.90 D.75‎ 答案 B 解析 ∵a1+a2+a3=‎3a2=15,∴a2=5.‎ ‎∵a1=5-d,a3=5+d,d>0,‎ ‎∴a‎1a‎2a3=(5-d)·5·(5+d)=80,‎ ‎∴d=3,a1=2.‎ ‎∴a11+a12+a13=‎3a12=3(a1+11d)‎ ‎=‎3a1+33d=3×2+33×3=105.‎ ‎5.若{an}为等差数列,Sn为其前n项和,若a1>0,d0成立的最大自然数n为(  )‎ A.11 B.12‎ C.13 D.14‎ 答案 A 解析 S4=S8⇒a5+a6+a7+a8=0⇒a6+a7=0,又a1>0,da5>0,a6=0,0>a7>a8>….‎ ‎∴当n=5或6时,Sn取到最大值.‎ ‎10.已知数列{an}中,a1=20,an+1=an+2n-1,n∈N*,则数列{an}的通项公式an=________.‎ 答案 n2-2n+21‎ 解析 ∵an+1-an=2n-1,‎ ‎∴a2-a1=1,a3-a2=3,…,‎ an-an-1=2n-3,n≥2.‎ ‎∴an-a1=1+3+5+…+(2n-3).‎ ‎∴an=20+=n2-2n+21.‎ 三、解答题 ‎11.甲、乙两物体分别从相距‎70 m的两处同时相向运动,甲第1分钟走‎2 m,以后每分钟比前1分钟多走‎1 m,乙每分钟走‎5 m.‎ ‎(1)甲、乙开始运动后几分钟相遇?‎ ‎(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走‎1 m,乙继续每分钟走‎5 m,那么开始运动几分钟后第二次相遇?‎ 解 (1)设n分钟后第1次相遇,依题意,‎ 有2n++5n=70,‎ 整理得n2+13n-140=0.‎ 解之得n=7,n=-20(舍去).‎ 第1次相遇是在开始运动后7分钟.‎ ‎(2)设n分钟后第2次相遇,依题意,有 ‎2n++5n=3×70,‎ 整理得n2+13n-420=0.‎ 解之得n=15,n=-28(舍去).‎ 第2次相遇是在开始运动后15分钟.‎ ‎12.已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3·a4=117,a2+a5=22.‎ ‎(1)求数列{an}的通项公式an;‎ ‎(2)若数列{bn}是等差数列,且bn=,求非零常数c.‎ 解 (1)设等差数列{an}的公差为d,且d>0.‎ ‎∵a3+a4=a2+a5=22,又a3·a4=117,‎ 又公差d>0,∴a30 (n≥20).‎ ‎14.把自然数1,2,3,4,…按下列方式排成一个数阵.‎ ‎1‎ ‎2 3‎ ‎4 5 6‎ ‎7 8 9 10‎ ‎11 12 13 14 15‎ ‎……………………………‎ 根据以上排列规律,数阵中第n (n≥3)行从左至右的第3个数是______________. ‎ 答案 -+3‎ 解析 该数阵的第1行有1个数,第2行有2个数,…,第n行有n个数,则第n-1 (n≥3)行的最后一个数为=-,则第n行从左至右的第3个数为-+3.‎ ‎1.等差数列是最基本、最常见的数列,等差数列的定义是研究解决等差数列的判定和性质,推导通项公式、前n项和公式的出发点.‎ ‎2.通项公式与前n项和公式联系着五个基本量:a1、d、n、an、Sn.掌握好本部分知识的内在联系、结构,以便灵活运用.‎ ‎3.另外用函数观点和方法揭示等差数列的特征,在分析解决数列的综合题中有重要的意义.‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料