第二章 章末检测 (A)
一、选择题(本大题共12小题,每小题5分,共60分)
1.{an}是首项为1,公差为3的等差数列,如果an=2 011,则序号n等于( )
A.667 B.668 C.669 D.671
答案 D
解析 由2 011=1+3(n-1)解得n=671.
2.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是( )
A.15 B.30 C.31 D.64
答案 A
解析 在等差数列{an}中,a7+a9=a4+a12,
∴a12=16-1=15.
3.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为( )
A.81 B.120 C.168 D.192
答案 B
解析 由a5=a2q3得q=3.
∴a1==3,
S4===120.
4.等差数列{an}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( )
A.160 B.180 C.200 D.220
答案 B
解析 ∵(a1+a2+a3)+(a18+a19+a20)
=(a1+a20)+(a2+a19)+(a3+a18)
=3(a1+a20)=-24+78=54,
∴a1+a20=18.
∴S20==180.
5.数列{an}中,an=3n-7 (n∈N+),数列{bn}满足b1=,bn-1=27bn(n≥2且n∈N+),若an+logkbn为常数,则满足条件的k值( )
A.唯一存在,且为 B.唯一存在,且为3
C.存在且不唯一 D.不一定存在
答案 B
解析 依题意,
bn=b1·n-1=·3n-3=3n-2,
∴an+logkbn=3n-7+logk3n-2
=3n-7+(3n-2)logk
=n-7-2logk,
∵an+logkbn是常数,∴3+3logk=0,
即logk3=1,∴k=3.
6.等比数列{an}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( )
A.8 B.-8 C.±8 D.以上都不对
答案 A
解析 ∵a2+a6=34,a2·a6=64,∴a=64,
∵a2>0,a6>0,∴a4=a2q2>0,∴a4=8.
7.若{an}是等比数列,其公比是q,且-a5,a4,a6成等差数列,则q等于( )
A.1或2 B.1或-2 C.-1或2 D.-1或-2
答案 C
解析 依题意有2a4=a6-a5,
即2a4=a4q2-a4q,而a4≠0,
∴q2-q-2=0,(q-2)(q+1)=0.
∴q=-1或q=2.
8.设等比数列{an}的前n项和为Sn,若S10∶S5=1∶2,则S15∶S5等于( )
A.3∶4 B.2∶3 C.1∶2 D.1∶3
答案 A
解析 显然等比数列{an}的公比q≠1,则由==1+q5=⇒q5=-,
故====.
9.已知等差数列{an}的公差d≠0且a1,a3,a9成等比数列,则等于( )
A. B. C. D.
答案 C
解析 因为a=a1·a9,所以(a1+2d)2=a1·(a1+8d).所以a1=d.
所以==.
10.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是( )
A.21 B.20 C.19 D.18
答案 B
解析 ∵(a2-a1)+(a4-a3)+(a6-a5)=3d,
∴99-105=3d.∴d=-2.
又∵a1+a3+a5=3a1+6d=105,∴a1=39.
∴Sn=na1+d=-n2+40n=-(n-20)2+400.
∴当n=20时,Sn有最大值.
11.设{an}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是( )
A.X+Z=2Y B.Y(Y-X)=Z(Z-X)
C.Y2=XZ D.Y(Y-X)=X(Z-X)
答案 D
解析 由题意知Sn=X,S2n=Y,S3n=Z.
又∵{an}是等比数列,
∴Sn,S2n-Sn,S3n-S2n为等比数列,
即X,Y-X,Z-Y为等比数列,
∴(Y-X)2=X·(Z-Y),
即Y2-2XY+X2=ZX-XY,
∴Y2-XY=ZX-X2,
即Y(Y-X)=X(Z-X).
12.已知数列1,,,,,,,,,,…,则是数列中的( )
A.第48项 B.第49项
C.第50项 D.第51项
答案 C
解析 将数列分为第1组一个,第2组二个,…,第n组n个,
即,,,…,,
则第n组中每个数分子分母的和为n+1,则为第10组中的第5个,其项数为(1+2+3+…+9)+5=50.
二、填空题(本大题共4小题,每小题4分,共16分)
13.-1与+1的等比中项是________.
答案 ±1
14.已知在等差数列{an}中,首项为23,公差是整数,从第七项开始为负项,则公差为______.
答案 -4
解析 由,解得-≤d1,a99a100-1>0,