第二章 圆锥曲线与方程
§2.1 椭 圆
2.1.1 椭圆及其标准方程
课时目标 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.
1.椭圆的概念:平面内与两个定点F1,F2的距离的和等于________(大于|F1F2|)的点的轨迹叫做________.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.当|PF1|+|PF2|=|F1F2|时,轨迹是__________,当|PF1|+|PF2||F1F2|时轨迹才是椭圆,如果2a=|F1F2|,轨迹是
线段F1F2,如果2ab>0,因此判断椭圆的焦点所在的坐标轴要看方程中的分母,焦点在分母大的对应轴上.
3.求椭圆的标准方程常用待定系数法,一般是先判断焦点所在的坐标轴进而设出相应的标准方程,然后再计算;如果不能确定焦点的位置,有两种方法求解,一是分类讨论,二是设椭圆方程的一般形式,即mx2+ny2=1 (m,n为不相等的正数).
第二章 圆锥曲线与方程
§2.1 椭 圆
2.1.1 椭圆及其标准方程
答案
知识梳理
1.常数 椭圆 焦点 焦距 线段F1F2 不存在
2.+=1 (a>b>0) F1(-c,0),F2(c,0) 2c +=1 (a>b>0)
作业设计
1.D [∵|MF1|+|MF2|=6=|F1F2|,
∴动点M的轨迹是线段.]
2.B [由椭圆方程知2a=8,
由椭圆的定义知|AF1|+|AF2|=2a=8,
|BF1|+|BF2|=2a=8,所以△ABF2的周长为16.]
3.D
4.B [|a|-1>a+3>0.]
5.D [椭圆的焦点在x轴上,排除A、B,
又过点验证即可.]
6.D [由椭圆的定义,知|PF1|+|PF2|=2a=8.
由题可得||PF1|-|PF2||=2,
则|PF1|=5或3,|PF2|=3或5.
又|F1F2|=2c=4,∴△PF1F2为直角三角形.]
7.2 120°
解析
∵|PF1|+|PF2|=2a=6,
∴|PF2|=6-|PF1|=2.
在△F1PF2中,
cos∠F1PF2=
==-,∴∠F1PF2=120°.
8.4 3
解析 设|PF1|=x,则k=x(2a-x),
因a-c≤|PF1|≤a+c,即1≤x≤3.
∴k=-x2+2ax=-x2+4x=-(x-2)2+4,
∴kmax=4,kmin=3.
9.m-n
解析 设a,c分别是椭圆的长半轴长和半焦距,则,则2c=m-n.
10.解 (1)∵椭圆的焦点在x轴上,
∴设椭圆的标准方程为+=1 (a>b>0).
∵2a=10,∴a=5,又∵c=4.
∴b2=a2-c2=52-42=9.
故所求椭圆的标准方程为+=1.
(2)∵椭圆的焦点在y轴上,
∴设椭圆的标准方程为+=1 (a>b>0).
由椭圆的定义知,2a= +
=+=2,
∴a=.
又∵c=2,∴b2=a2-c2=10-4=6.
故所求椭圆的标准方程为+=1.
11.解 ∵|PM|=|PA|,|PM|+|PO1|=4,
∴|PO1|+|PA|=4,又∵|O1A|=212,
∴G点的轨迹是椭圆,B、C是椭圆焦点.
∴2c=|BC|=12,c=6,2a=20,a=10,
b2=a2-c2=102-62=64,
故G点的轨迹方程为+=1,
去掉(10,0)、(-10,0)两点.
又设G(x′,y′),A(x,y),则有+=1.
由重心坐标公式知
故A点轨迹方程为+=1.
即+=1,去掉(-30,0)、(30,0)两点.